
EXE: Automatically Generating Inputs of Death

CRISTIAN CADAR, VIJAY GANESH, PETER M. PAWLOWSKI,

DAVID L. DILL and DAWSON R. ENGLER

Stanford University

This paper presents EXE, an effective bug-finding tool that automatically generates inputs that
crash real code. Instead of running code on manually or randomly constructed input, EXE runs
it on symbolic input initially allowed to be “anything.” As checked code runs, EXE tracks the
constraints on each symbolic (i.e., input-derived) memory location. If a statement uses a symbolic
value, EXE does not run it, but instead adds it as an input-constraint; all other statements run
as usual. If code conditionally checks a symbolic expression, EXE forks execution, constraining
the expression to be true on the true branch and false on the other. Because EXE reasons about
all possible values on a path, it has much more power than a traditional runtime tool: (1) it can
force execution down any feasible program path and (2) at dangerous operations (e.g., a pointer
dereference), it detects if the current path constraints allow any value that causes a bug. When
a path terminates or hits a bug, EXE automatically generates a test case by solving the current
path constraints to find concrete values using its own co-designed constraint solver, STP. Because
EXE’s constraints have no approximations, feeding this concrete input to an uninstrumented
version of the checked code will cause it to follow the same path and hit the same bug (assuming
deterministic code).

EXE works well on real code, finding bugs along with inputs that trigger them in: the BSD
and Linux packet filter implementations, the udhcpd DHCP server, the pcre regular expression
library, and three Linux file systems.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; Symbolic execution

General Terms: Reliability, Languages

Additional Key Words and Phrases: Bug finding, test case generation, constraint solving, symbolic
execution, dynamic analysis, attack generation.

1. INTRODUCTION

Attacker-exposed code is often a tangled mess of deeply-nested conditionals, labyrin-
thine call chains, huge amounts of code, and frequent, abusive use of casting and
pointer operations. For safety, this code must exhaustively vet input received di-
rectly from potential attackers (such as system call parameters, network packets,

A shorter version of this paper appeared in the Proceedings of the 13th ACM Conference on
Computer and Communications Security, October 30 - November 3, 2006 [Cadar et al. 2006].

Authors’ addresses: Computer Systems Laboratory, Stanford University, 323 Serra Mall, Gates
Building, Stanford, CA 94305, U.S.A.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0000-0000/2008/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, February 2008, Pages 1–36.

2 · Cristian Cadar et al.

even data from USB sticks). However, attempting to guard against all possible at-
tacks adds significant code complexity and requires awareness of subtle issues such
as arithmetic and buffer overflow conditions, which the historical record unequivo-
cally shows programmers reason about poorly.

Currently, programmers check for such errors using a combination of code review,
manual and random testing, dynamic tools, and static analysis. While helpful, these
techniques have significant weaknesses. The code features described above make
manual inspection even more challenging than usual. The number of possibilities
makes manual testing far from exhaustive, and even less so when compounded by
programmer’s limited ability to reason about all these possibilities. While random
“fuzz” testing [Miller et al. 1990] often finds interesting corner case errors, even
a single equality conditional can derail it: satisfying a 32-bit equality in a branch
condition requires correctly guessing one value out of four billion possibilities. Cor-
rectly getting a sequence of such conditions is hopeless. Dynamic tools require test
cases to drive them, and thus have the same coverage problems as both random and
manual testing. Finally, while static analysis can benefit from full path coverage,
the fact that it inspects rather than executes code means that it reasons poorly
about bugs that depend on accurate value information (the exact value of an index
or size of an object), pointers, and heap layout, among many others.

This paper describes EXE (“EXecution generated Executions”), an unusual but
effective bug-finding tool built to deeply check real code. The main insight behind
EXE is that code can automatically generate its own (potentially highly complex)
test cases. Instead of running code on manually or randomly constructed input,
EXE runs it on symbolic input that is initially allowed to be “anything.” As checked
code runs, if it tries to operate on symbolic (i.e., input-derived) expressions, EXE
replaces the operation with its corresponding input-constraint; it runs all other
operations as usual. When code conditionally checks a symbolic expression, EXE
forks execution, constraining the expression to be true on the true branch and false
on the other. When a path terminates or hits a bug, EXE automatically generates
a test case that will run this path by solving the path’s constraints for concrete
values using its co-designed constraint solver, STP (“Simple Theorem Prover”).

EXE amplifies the effect of running a single code path since the use of STP lets
it reason about all possible values that the path could be run with, rather than a
single set of concrete values from an individual test case. For instance, a dynamic
memory checker such as Purify [Hastings and Joyce 1992] only catches an out-of-
bounds array access if it is provided with a test case where the index (or pointer) has
a specific concrete value that is out-of-bounds. In contrast, when EXE explores the
same path (which it does automatically), it identifies this bug if there is any possible
input value on the given path that can cause an out-of-bounds access to the array.
Similarly, for an arithmetic expression that uses symbolic data, EXE can solve the
associated constraints for values that cause an overflow or a division/modulo by
zero. Moreover, for an assert statement, EXE can reason about all possible input
values on the given path that may cause the assert to fail. If the assert does not
fail, then either (1) no input on this path can cause it to fail, (2) EXE does not
have the full set of constraints (see Section 5), or (3) there is a bug in EXE.

The ability to automatically generate concrete inputs to execute program paths

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 3

has several nice features. First, EXE can test any code path it wishes (and given
enough time, exhaust all of them), thereby getting coverage out of practical reach
from random or manual testing. Second, EXE generates actual attacks. This
ability lets it show that external forces can exploit a bug, improving on static
analysis, which often cannot distinguish minor errors from showstoppers. Third,
the presence of a concrete input allows the user to easily discard error reports due
to bugs in EXE or STP: the user can confirm the error report by simply re-running
an uninstrumented copy of the checked code on the concrete input to verify that
it actually hits the bug (note that both EXE and STP are sound with respect
to the test cases generated, and therefore false positives can only arise due to
implementation bugs in EXE and/or STP).

Careful co-design of EXE and STP has resulted in a system with several novel
features. First, STP primitives let EXE build constraints for all C expressions with
perfect accuracy, down to a single bit. (The main exception is floating-point, which
STP does not handle.) EXE handles pointers, unions, bit-fields, casts, and aggres-
sive bit-operations such as shifting, masking, and byte swapping. Because EXE is
dynamic (it executes the checked code), it has access to runtime information typ-
ically not available to static analyses. All non-symbolic (i.e., concrete) operations
happen exactly as they would in uninstrumented code and produce exactly the
same results: when these results appear in future constraints they are correct, not
approximations. In our context, this accuracy means that if (1) EXE has the full
set of constraints for a given path, (2) STP can produce a concrete solution from
these constraints, and (3) the path is deterministic, then rerunning the checked
system on these concrete values will force the program to follow the same exact
path to the error or termination that generated this set of constraints.

In addition, STP provides the speed needed to make perfect accuracy useful.
Aggressive customization makes STP often 100 times faster than more traditional
constraint solvers while handling a broader class of examples. Crucially, STP effi-
ciently reasons about constraints that refer to memory using symbolic pointer ex-
pressions, which presents more challenges than one may expect. For example, given
a concrete pointer a and a symbolic variable i with the constraint 0 ≤ i ≤ n, the
conditional expression if (a[i] == 10) is essentially equivalent to a big disjunc-
tion: if (a[0] == 10 || . . . || a[n] == 10). Similarly, an assignment a[i] =

42 represents a potential assignment to any element in the array between 0 and n.

The result of these features is that EXE finds bugs in real code, and automatically
generates concrete inputs to trigger them. It generates evil packet filters that exploit
buffer overruns in the very mature and audited Berkeley Packet Filter (BPF) code
as well as its Linux equivalent (§ 6.1). It generates packets that cause invalid
memory reads in the udhcpd DHCP server (§ 6.2), and bad regular expressions
that compromise the pcre library (§ 6.3), previously audited for security holes. In
prior work, it generated raw disk images that, when mounted by a Linux kernel,
would crash it or cause a buffer overflow [Yang et al. 2006].

Both EXE and STP are contributions of this paper, which is organized as follows.
We first give an overview of the entire system (§ 2), then describe STP and its key
optimizations (§ 3), and do the same for EXE (§ 4). Finally, we summarize the
main limitations(§ 5), present experimental results (§ 6), discuss related work (§ 7),

ACM Journal Name, Vol. V, No. N, February 2008.

4 · Cristian Cadar et al.

1 : #include <assert.h>

2 : int main(void) {
3 : unsigned i, t, a[4] = { 1, 3, 5, 2 };
4 : make symbolic(&i);
5 : if(i >= 4)
6 : exit(0);
7 : // cast + symbolic offset + symbolic mutation
8 : char *p = (char *)a + i * 4;
9 : *p = *p − 1; // Just modifies one byte!
10:
11: // ERROR: EXE catches potential overflow i=2
12: t = a[*p];
13: // At this point i != 2.
14:
15: // ERROR: EXE catches div by 0 when i = 0.
16: t = t / a[i];
17: // At this point: i != 0 && i != 2.
18:
19: // EXE determines that neither assert fires.

20: if(t == 2)
21: assert(i == 1);
22: else

23: assert(i == 3);
24: }

Fig. 1. A contrived, but complete C program (simple.c) that generates five test cases when run
under EXE, two of which trigger errors (a memory overflow at line 12 and a division by zero
at line 16). This example is used heavily throughout the paper. We assume it runs on a 32-bit
little-endian machine.

and conclude (§ 8).

2. EXE OVERVIEW

This section gives an overview of EXE. We illustrate EXE’s main features by walk-
ing the reader through the simple code example in Figure 1. When EXE checks this
code, it explores each of the three possible paths, and finds two errors: an illegal
memory write (line 12) and a division by zero (line 16). Figure 2 gives a partial
transcript of a checking run.

To check their code with EXE, programmers only need to mark which mem-
ory locations should be treated as holding symbolic data whose values are initially
entirely unconstrained. These memory locations are typically the input to the pro-
gram. In the example, the call make symbolic(&i) (line 4) marks the four bytes
associated with the 32-bit variable i as symbolic. The programmers then compile
their code using the EXE compiler, exe-cc, which instruments it using the CIL
source-to-source translator [Necula et al. 2002]. This instrumented code is then
compiled with a normal compiler (e.g., gcc), linked with the EXE runtime system
to produce an executable (in Figure 2, ./a.out), and run.

As the program runs, EXE executes each feasible path, tracking the constraints
on the input which will take it down each path. When a program path terminates,
EXE calls STP to solve the path’s constraints for concrete values. A path terminates
when (1) exit() is called, (2) the program crashes, (3) an assertion fails, or (4)

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 5

% exe−cc simple.c
% ./a.out
% ls exe−last

test1.forks test2.out test3.forks test4.out
test1.out test2.ptr.err test3.out test5.forks
test2.forks test3.div.err test4.forks test5.out

% cat exe−last/test3.div.err
ERROR: simple.c:16 Division/modulo by zero!

% cat exe−last/test3.out
concrete byte values:
0 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

% cat exe−last/test3.forks
take these choices to follow path
0 # false branch (line 5)
0 # false (implicit: pointer overflow check on line 9)
1 # true (implicit: div−by−0 check on line 16)

% cat exe−last/test2.out
concrete byte values:
2 # i[0]
0 # i[1]
0 # i[2]
0 # i[3]

Fig. 2. Transcript of compiling and running the C program shown in Figure 1.

EXE detects an error. Constraint solutions are literally the concrete bit values for
an input that will cause the given path to execute. When generated in response to
an error, they provide a concrete attack that can be launched against the tested
system.

2.1 Instrumentation

The EXE compiler has the following main jobs. First, it inserts checks around
every assignment, expression, and branch in the tested program to determine if its
operands are concrete or symbolic. An operand is defined to be concrete if and only
if all its constituent bits are concrete. If all operands are concrete, the operation is
executed just as in the uninstrumented program. If any operand is symbolic, the
operation is not performed; instead, the operation is passed to the EXE runtime
system, which adds it as a constraint for the current path. For example, Figures 3
and 4 give the transformation rules for assignment involving primitive variables.
Figure 3 covers the case when the right hand side is a single primitive variable, while
Figure 4 covers the case when the right hand side is a binary operator involving
exactly two primitive variables. All other assignments involving primitive variables
can be recursively decomposed to these two main cases. Assignment involving array
indexing and pointer dereferences is more complicated and is discussed in Section 3.

For the example’s expression p = (char *)a + i * 4 (line 8), EXE checks if
the operands a and i on the right hand side of the assignment are concrete. If so,
it executes the expression, assigning the result to p. However, since i is symbolic,

ACM Journal Name, Vol. V, No. N, February 2008.

6 · Cristian Cadar et al.

// rule for v = w

simple_assign_rule(T v, T w) {

if sym(&w) == <null>

v = w

sym(&v) = <null>

else

sym(&v) = sym(&w)

}

Fig. 3. Transformation rule for assignment v = w for any primitive variables v and w of type T.
sym(&v) returns the symbolic expression associated with variable v, or <null> if v is concrete.

// rule for v = x OP y

binary_assign_rule(OP, T v, T x, T y) {

if sym(&x) == <null> && sym(&y) == <null>

v = x OP y;

sym(&v) = <null>

else if sym(&x) == <null>

sym(&v) = sym_exp(OP, x, sym(&y));

else if sym(&y) == <null>

sym(&v) = mk_sym_exp(OP, sym(&x), y);

else

sym(&v) = mk_sym_ex(OP, sym(&x), sym(&y));

}

Fig. 4. Transformation rule for v = x OP y where primitive variables x and y are of type T, and
OP is a binary operator. sym(&v) returns the symbolic expression associated with variable v, or
<null> if v is concrete. mk sym exp constructs a new symbolic expression.

EXE instead adds the constraint that p equals (char∗)a + i ∗ 4. Note that because
i can have one of four values (0 ≤ i ≤ 3), p simultaneously refers to four different
locations a[0], a[1], a[2] and a[3]. In addition, EXE treats memory as untyped bytes
(§ 3.2) and thus does not get confused by this (dubious) cast, nor the subsequent
type-violating modification of a low-order byte at line 9.

Second, exe-cc inserts code to fork program execution when it reaches a symbolic
branch point, so that it can explore each possibility. Figure 5 shows the transfor-
mation rule for conditional expressions. To understand how this transformation
works, consider the if-statement at line 5, if(i >= 4). Since i is symbolic, so is
this expression. Thus, EXE forks execution (using the UNIX fork() system call)
and on the true path asserts that i ≥ 4 is true, and on the false path that it is not.
Each time it adds a branch constraint (using add sym constraint in Figure 5),
EXE queries STP to check that there exists at least one solution for the current
path’s constraints. If not, the path is impossible and EXE stops executing it. In
our example, both branches are possible, so EXE explores both (though the true
path exits immediately at line 6).

2.2 Default checks

In order to find generic program errors, exe-cc inserts code that calls to check if
a symbolic expression could have any possible value that could cause either (1) a
null or out-of-bounds memory reference or (2) a division or modulo by zero. If so,

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 7

// rule for if (e) s1 else s2

conditional_rule(e, s1, s2) {

if is_sym(e) == <false>

if e

s1

else

s2

else

if fork() == child

push_constraint(e = <true>)

s1

else

push_constraint(e = <false>)

s2

}

push_constraint(c) {

add_sym_constraint(c)

if path_feasible() == <false>

kill()

}

Fig. 5. Transformation rule for conditional expressions if(e) s1 else s2. is sym(e) returns
<true> iff e is a symbolic expression, and returns <false> otherwise. add sym constraint(c)

adds the constraint c to the set of constraints on the current path. path feasible() determines
whether the current set of constraints has a solution, and kill() terminates execution on the
current path.

// rule for checking an error condition c

if fork() == child

push_constraint(c)

emit_error()

else

push_constraint(!c)

// continue normal execution

Fig. 6. Transformation template for checking error condition c. emit error() emits an error,
together with a corresponding test case, and exits. push constraint() is defined in Figure 5.

EXE forks execution and (1) on the true path asserts that the condition does occur,
emits a test case, and terminates; (2) on the false path asserts that the condition
does not occur and continues execution (to find more bugs). Extending EXE to
support other checks is easy. Figure 6 shows a template transformation that checks
whether an error condition c occurs.

These checks are powerful because if EXE has the entire set of constraints on
such expressions and STP can solve them, then EXE can detect if any input exists
on that path that causes the error. Similarly, if the check passes, then no input
exists that causes the error on that path — i.e., the path has been verified as safe

ACM Journal Name, Vol. V, No. N, February 2008.

8 · Cristian Cadar et al.

under all possible input values.
These checks find two errors in our example. First, the symbolic index *p in

the expression a[*p] (line 12) can cause an out-of-bounds error because *p can
equal 4: the pointer p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-order byte of a[2]
(recall that each element of a has four bytes). The value of this byte is 4 after the
subtraction at line 9. Since a[4] references an illegal location (one byte past the
end of a), EXE forks execution and on one path asserts that i = 2 and emits an
error (test2.ptr.err) and a test case (test2.out), and on the other asserts that
i 6= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can generate a division by
zero, which EXE detects by tracking and solving the constraints that (1) i can
equal 0, 1, or 3 and (2) a[0] can equal 0 after the decrement at line 9. EXE again
forks execution, emits an error (test3.div.err) and a test case (test3.out) and
exits. The other path adds the constraint that i 6= 0 and continues.

Note, EXE automatically turns a programmer assert(e) on a symbolic expres-
sion e into a universal check of e simply because it tries to exhaust both paths of
if-statements. If EXE determines that e can be false, it will go down the assertion’s
false path, hitting its error handling code. Further, if STP cannot find any such
value, none exists on this path. In the example, EXE explores both branches at
line 20, and proves that no input value exists that can cause either assert (line 21
and line 23) to fail. We leave working through this logic as an exercise for the more
energetic reader. Even a cursory attempt should show the trickiness of manual
reasoning about all-paths and all-values for even trivial code fragments. (We spent
more time than we would like to admit puzzling over our own hand-crafted exam-
ple and eventually gave up, resorting to using EXE to double-check our oft-wrong
reasoning.)

Finally, EXE can be configured to insert additional forks at certain program
points, in order to explore error prone states. For example, we can configure EXE
to fork at each arithmetic operation, and add on one path the constraint that the
operation triggers an arithmetic overflow (if possible), and on the other path that it
doesn’t. Similarly, we can ask EXE to fork at each cast: for narrowing casts, bugs
may be introduced when the bits lost are not all zero, while for widening casts from
a signed to an unsigned, bugs can be introduced via sign extension – if the signed
variable is negative, the result of the cast is a very large number, which sometimes
is not intended. While these extra forks are not necessary to find generic bugs such
as buffer overflows and division/modulo by zero bugs, they can prove very useful
in finding cross-checking errors (see § 6.4).

2.3 Mechanics of the EXE tool

The paths followed by EXE for our example are shown graphically in Figure 7.
The branch points (both explicit and implicit) where EXE forks a new process
are represented by rhombuses, and the test cases it generates by sequences of four
bytes.

Mechanically, at each run of the instrumented code, EXE creates a new directory
and, for each path, creates two files: one to hold the concrete bytes it generates,
the other to hold the values for each decision (1 to take the true branch, 0 to take

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 9

add(i < 4) add(i >= 4)

8000

i >= 4

in bounds(a[*p])

a[i] == 0

i == 1i ==3

test1.out

add(out of bounds (a[*p]))

t == 2

kill path

add(in bounds (a[*p]))

add(a[i] == 0)add(a[i] != 0)

add(t == 2)add(t != 2)

Invalid InvalidValid Valid

kill path

2000

test2.out

0000

test3.out

1000

test5.out

3000

test4.out

“memory overflow!”

“division by zero!”

test4.out

Fig. 7. Execution for the simple C program in Figure 1: EXE generates five test cases, two of
which are errors.

the false). The choice points enable easy replay of a single path for debugging. The
values can either be read back by using a trivial driver (which EXE provides) or
used completely separately from EXE.

In our example, the three paths and two errors lead to five pairs of files that hold
(1) concrete byte values for i (these files have the suffix .out) and (2) the branch
decisions for that path (suffix .forks). EXE creates a symbolic link exe-last

pointing to the most recent output directory. The two errors are in .err files. If
we look at the contents of the file for the division bug (test3.out), it shows that
each byte of i is zero, which when concatenated in the right order and treated as an
unsigned 32-bit quantity equals 0, as required. The branch decision states that we
take the false branch at line 5, followed by the (implicit) false branch of the memory
overflow check at line 9, and finally the (implicit) true branch of the division check
at line 16. Similarly, the concrete values for the pointer error are byte 0 equals 2
and bytes 1, 2, 3 equal 0, which when concatenated yields the 32-bit value 2 as
needed.

As expected, EXE is sound with respect to the tests it generates. That is, the
concrete test case in each .out file is guaranteed to follow the branch points in the
corresponding .forks file. However, errors in EXE and STP can lead to violations
of this key property. Thus, EXE tracks the basic blocks visited when generating a
given test case and automatically verifies that the same path is executed when the
concrete values are rerun on the checked code. This check found many bugs inside
EXE.

3. KEY FEATURES OF STP

This section gives a high-level overview of STP’s key features, including the sup-
port it provides to EXE for accurately modeling memory. It then describes the
optimizations STP performs, and shows experimental numbers evaluating their ef-

ACM Journal Name, Vol. V, No. N, February 2008.

10 · Cristian Cadar et al.

ficiency.

EXE’s constraint solver is, more precisely, a decision procedure for bitvectors
and arrays. Decision procedures are programs which determine the satisfiability
of logical formulas that can express constraints relevant to software and hardware,
and have been a mainstay of program verification for several decades. In the past,
these decision procedures have been based on variations of Nelson and Oppen’s
cooperating decision procedures framework [Nelson and Oppen 1979] for combining
a collection of specialized decision procedures into a more comprehensive decision
procedure capable of handling a more expressive logic than any of the specialized
procedures can do individually.

The Nelson-Oppen approach has two downsides. Whenever a specialized decision
procedure can infer that two expressions are equal, it must do so explicitly and
communicate the equality to the other specialized decision procedures, which can
be expensive. Worse, the framework tends to lead to a web of complex dependencies,
which makes its code difficult to understand, tune, or get right. These problems
hampered CVCL [Barrett and Berezin 2004; Barrett et al. 2004], a state-of-the-art
decision procedure that we implemented previously.

Our CVCL travails motivated us to simplify the design of STP by exploiting the
extreme improvement in SAT solvers over the last decade. STP forgoes Nelson-
Oppen contortions, and instead preprocesses the input through the application of
mathematical and logical identities, and then eagerly translates constraints into a
purely propositional logical formula that it feeds to an off-the-shelf SAT solver (we
use MiniSAT [Een and Sorensson 2003]). As a result, the STP implementation is
four times smaller than CVCL’s, yet often runs orders of magnitude faster. STP is
also more modular, because its pieces work in isolation. Modularity and simplicity
help constraint solvers as they do everything else. In a sense, STP can be viewed as
the result of applying the systems approach to constraint solving that has worked
so well in the context of SAT: start simple, measure bottlenecks on real workloads,
and tune to exactly these cases. STP was recently judged the co-winner of the 32-
bit bitvector (QF UFBV32) division of the SMTLIB competition [SMTLIB 2006]
held as a satellite event of CAV 2006 [Ball and Jones 2006].

Recently, several other decision procedures have been based on eager translation
to SAT, including Saturn [Xie and Aiken 2005], UCLID [Bryant et al. 2002], and
Cogent [Cook et al. 2005]. Saturn is a static program analysis framework that
translates C operations to SAT. It does not directly deal with arrays, so it avoids
many interesting problems and optimizations. UCLID implements features such as
arrays and arbitrary precision integer arithmetic, but does not focus on bitvector
operations. Cogent is perhaps the most similar in architecture and purpose to
STP. Judging from the published descriptions of these systems, STP’s focus on
optimizations for arrays is unique (and uniquely important for use with EXE).
STP also has simplifications on word-level operations that are not discussed in the
description of Cogent. (At this time, it is difficult to do side-by-side performance
comparisons because of lack of common benchmarks and input syntax; Saturn,
UCLID and Cogent also didn’t participate in the SMTLIB competition.)

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 11

3.1 STP primitives

Systems code often treats memory as untyped bytes, and observes a single memory
location in multiple ways. For example, by casting signed variables to unsigned,
or (in the code we checked) treating an array of bytes as a network packet, inode,
packet filter, etc. through pointer casting.

As a result, STP also views memory as untyped bytes. It provides only three data
types: booleans, bitvectors, and arrays of bitvectors. A bitvector is a fixed-length
sequence of bits. For example, 0010 is a constant, 4-bit bitvector representing the
constant 2. With the exception of floating-point, which STP does not support, all
C operators have a corresponding STP operator that can be used to impose con-
straints on bitvectors. STP implements all arithmetic operations (even non-linear
operations such as multiplication, division and modulo), bitwise boolean opera-
tions, relational operations (less than, less than or equal, etc.), and multiplexers,
which provide an “if-then-else” construct that is converted into a logical formula
(similar to C’s ternary operator). In addition, STP supports bit concatenation and
bit extraction, features EXE makes extensive use of in order to translate untyped
memory into properly-typed constraints.

STP implements its bitvector operations by translating them to operations on
individual bits. There are two expression types: terms, which have bitvector values,
and formulas, which have boolean values. If x and y are 32-bit bitvector values,
x + y is a term returning a 32-bit result, and x + y < z is a formula. In the
implementation, terms are converted into vectors of boolean formulas consisting
entirely of single bit operations (AND, XOR, etc.). Each operation is converted
in a fairly obvious way: for example, a 32-bit add is implemented as a ripple-
carry adder. Formulas are converted into DAGs of single bit operations, where
expressions with identical structure are represented uniquely (expression nodes are
looked up in a hash table whenever they are created to see whether an identical
node already exists). Simple boolean optimizations are applied as the nodes are
created; for example, a call to create a node for AND(x, FALSE) will just return the
FALSE node. The resulting boolean DAG is then converted to CNF by the standard
method of naming intermediate nodes with new propositional variables.

3.2 Mapping C code to STP constraints

EXE represents each symbolic data block as an array of 8-bit bitvectors. The
main advantage of using bitvectors is that they, like the C memory blocks that
they represent, are essentially untyped. This property allows us to easily express
constraints that refer to the same memory in different ways; each read of memory
generates constraints based on the static type of the read (e.g., int, unsigned, etc.)
but these types do not persist.

EXE uses STP to solve constraints on input as follows. First, it tracks what
memory locations in the checked code hold symbolic values. Second, it translates
expressions to bitvector based constraints. We discuss each step below.

Initially, there are no symbolic bytes in the checked code. When the user
marks a byte-range, b, as symbolic, EXE calls into STP to create a corresponding,
identically-sized array bsym, and records in a table that b corresponds to bsym. In
Figure 1 (line 4), the call to make the 32-bit variable i symbolic causes EXE to

ACM Journal Name, Vol. V, No. N, February 2008.

12 · Cristian Cadar et al.

allocate a bitvector array isym with four 8-bit elements and record that the concrete
address of i (&i) corresponds to it.

As the program executes, the table mapping concrete bytes to STP bitvectors
grows in exactly two cases:

(1) v = e: where e is a symbolic expression (i.e., has at least one symbolic operand).
EXE builds the symbolic expression esym representing e, and records that &v

(which provides a unique identifier for v) maps to it. Note that EXE does not
allocate a new STP variable in this case but instead will substitute esym for v
in subsequent constraints. EXE removes this mapping when v is overwritten
with a concrete value or deallocated. In Figure 1 (line 8), EXE records the fact
that p maps to expression (char∗)a + isym ∗ 4 and substitutes any subsequent
use of p’s value with this expression. (Note that a is replaced by the actual
base address of array a in the program.)

(2) b[e]: where e is a symbolic expression and b is a concrete array. Since STP
must reason about the set of values that b[e] could reference, EXE imports b
into STP by allocating an identically-sized STP array bsym, and initializing it
to have the same (constant) contents as b. It then records that b maps to bsym

and removes this mapping only when the array is deallocated.
In Figure 1 (line 12), the array expression a[*p] causes EXE to allocate asym,
a 16-element array of 8-bit bitvectors, and assert that:

asym = {1, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0}

Each expression e used in a symbolic operation is constructed in the following
way. For each read of size n of a storage location L in e, EXE checks if L is concrete.
If so, the read of L is replaced by its concrete value (i.e., a constant). Otherwise,
EXE breaks down L into its corresponding bytes b0, . . . , bn−1. It then builds a
symbolic expression with the same size as L by concatenating each byte’s (possibly
symbolic) value. For each byte bi it queries its data structures to check if bi is
symbolic. If not, it uses its current concrete value (an 8-bit constant), otherwise it
looks up and uses its symbolic expression (bi)sym.

For example, in Figure 1 (line 8), EXE builds the symbolic expression corre-
sponding to (char*)a + i*4 as follows. EXE determines that the first read of a
is concrete and so replaces a with its concrete address (denoted a) represented as a
32-bit bitvector constant. It then determines that i is symbolic, and thus breaks it
down into its four bytes, which are mapped to their corresponding STP bitvector
array elements isym[0], isym[1], isym[2], and isym[3]. Then, the four bitvectors are
concatenated to obtain the expression isym[3] @ isym[2] @ isym[1] @ isym[0] (where
“@” denotes bitvector concatenation, and we use little-endian order for multi-byte
values), which corresponds to the four-byte read of i. Finally, the constant 4 is
replaced by the corresponding 32-bit bitvector constant 0...00000100. The resulting
expression is

a + (isym[3]@isym[2]@isym[1]@isym[0]) ∗ 0...00000100

A limitation of STP is that it does not support pointers directly. EXE emulates
symbolic pointer expressions by mapping them as an array reference at some offset.
For each pointer p in the checked code, EXE tracks the data object to which p

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 13

points by instrumenting all allocation and deallocation sites as well as all pointer
arithmetic expressions (standard techniques developed by bounds-checking compil-
ers [Ruwase and Lam 2004]). For example, in Figure 1 (line 4), EXE records that p
points to the data block a of size 16. Then, when EXE encounters a pointer deref-
erence *p: (1) it looks up the block b to which pointer p refers; (2) looks up the
corresponding STP array bsym associated with b; and (3) computes the (possibly
symbolic) offset of p from the base of the object it points to (i.e., o = p - b). EXE
can then use the symbolic expression bsym[isym + osym] in symbolic constraints.

However, STP’s lack of pointer support means that when EXE encounters a
double-dereference **p of a symbolic pointer p it concretizes the first dereference
(*p), fixing it to one of the possibly many storage locations it could refer to. (How-
ever, the result of **p can still be a symbolic expression.) The user is also informed
when this happens. This situation has rarely shown up in practice (see § 4.3), but
we are working on removing it.

3.3 Concrete solutions

STP’s ability to generate a concrete solution for a given set of constraints is essential
for EXE. Whenever EXE terminates to execute a path thorough the program under
checking, it asks STP for a concrete solution for the set of constraints gathered
on that path. Effectively, this solution represents a test case that will drive an
uninstrumented version of the checked program through the exact same path as
the one explored by EXE. In the case of an error path, the test case represents an
actual attack that can be mounted against the vulnerable program. The ability to
independently confirm the attack is a significant advantage of EXE, which allows
it to have absolutely no false positives (while EXE is sound with respect to the
attacks it generates, there can still be false positives due to bugs in EXE and/or
STP).

Currently, STP can generate a single solution for a given set of constraints.
However, note that EXE can easily overcome this limitation by using the following
simple algorithm: (1) given a set of constraints C on input I, we first ask STP for
a solution s; (2) we add constraint I 6= s to the constraint set C and ask STP for a
new solution. We can repeat this algorithm to obtain more solutions (if they exist).

While in general EXE requires a single solution for a set of constraints, we do
employ this algorithm to determine whether a symbolic variable has a single con-
crete solution (by simply checking if a solution can still be generated in step (2) of
the algorithm above). If a symbolic variable has a single solution, we can replace it
by a concrete variable with the right value. This optional check in EXE has a big
impact on performance for certain benchmarks, but unfortunately it slows down
other benchmarks, and for this reason we only enable it when it proves beneficial.

3.4 The key to speed: fast array constraints

Almost always, the main bottleneck in STP when used in EXE is reasoning about
arrays. This subsection discusses STP’s key array optimizations.

STP is an implementation of logic, so it is a purely functional language. The
logic has one-dimensional arrays that are indexed by bitvectors and contain bitvec-
tors. The operations on arrays are read(A, i), which returns the value at location
A[i] where A is an array and i is an index expression of the correct type, and

ACM Journal Name, Vol. V, No. N, February 2008.

14 · Cristian Cadar et al.

write(A, i, v), which returns a new array with the same value as A at all indexes
except i, where it has the value v. Array reads and writes can appear as subexpres-
sions of an if-then-else construct, denoted by ite(c, a, b), where c is the condition,
a the then expression, and b the else expression.

STP eliminates array expressions by translating them to bitvector primitives
(which it then translates to SAT). This is accomplished through two main trans-
formations. The first, read-over-write, eliminates all write(A, i, v) expressions: 1

read(write(A, i, v), j) ⇒ ite(i = j, v, read(A, j))

The second, read elimination, eliminates all read expressions via a transforma-
tion mentioned in [Bryant et al. 2002] that enforces the axiom that if two indexes is
and it are the same, then read(A, is) and read(A, it) should return the same value.
Mechanically, STP first replaces each occurrence of a read read(A, ij) with a new
variable vj , and then for each two terms is, it ever used to index into the same array
A, it adds the array axiom:

is = it ⇒ vs = vt

For example, consider the formula:

(read(A, i1) = e1) ∧ (read(A, i2) = e2) ∧ (read(A, i3) = e3)

The transformed result would be:

(v1 = e1) ∧ (v2 = e2) ∧ (v3 = e3) ∧ (i1 = i2 ⇒ v1 = v2)∧

(i1 = i3 ⇒ v1 = v3) ∧ (i2 = i3 ⇒ v2 = v3)

Read elimination expands each formula by n(n − 1)/2 nodes, where n is the
number of syntactically distinct index expressions. Unfortunately, this blowup is
lethal for arrays of a few thousand elements, which occur frequently in EXE. For-
tunately, while finessing this problem appears hard in general, two optimizations
we developed work well on the constraints generated by EXE.

The array substitution optimization reduces the number of array variables by
substituting out all constraints of the form read(A, c) = e, where c is a constant
and e does not contain another array read. Programs often index into arrays using
constant indexes, so this is a case that occurs often in practice (see § 4.3). The
optimization has two passes. The first pass builds a substitution table with the
left-hand-side of each such equation (read(A, c)) as the key and the right-hand-side
(e) as the value, and then deletes the equation from the EXE query. The second
pass over the expression replaces each occurrence of a key by the corresponding
table entry. Note that for soundness, if we encounter a second equation whose left-
hand-side is already in the table, the second equation is not deleted and the table
is not changed. For our example, if we saw a subsequent equation read(A, i1) = e4

we would leave it; the second pass of the algorithm would rewrite it as e1 = e4.
The second optimization, array-based refinement, delays the translation of ar-

ray reads with non-constant indexes, in effect introducing some laziness into STP’s

1Note that a write makes sense only inside a read node. A write node by itself has no effect, and
can be ignored.

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 15

handling of arrays, in the hope of avoiding the O(n2) blowup from the read elim-
ination transformation. Its main trick is to solve a less-expensive approximation
of the formula, check the result in the original formula, and try again with a more
accurate approximation if the result is incorrect.

Initially, all array read expressions are replaced by variables to yield an approxi-
mation of the original formula. The resulting logical formula is under-constrained,
since it ignores the array axioms that require that array reads return the same
values when indexes are the same. If the resulting under-constrained formula is not
satisfiable, there is no solution for the original formula and STP returns unsatisfi-
able.

If, however, the SAT solver finds a solution to the under-constrained formula,
then that solution is not guaranteed to be correct because it could violate one of
the array axioms. For example, suppose STP is given the formula (read(A, 0) =
0) ∧ (read(A, i) = 1). STP would first apply the substitution optimization by
deleting the constraint read(A, 0) = 0 from the formula, and inserting the pair
(read(A, 0), 0)) in the substitution table. Then, it would replace read(A, i) by a
new variable vi, thus generating the under-constrained formula vi = 1. Suppose
STP finds the solution i = 1 and vi = 1. STP then translates the solution to the
variables of the original formula to get (read(A, 0) = 0) ∧ (read(A, 1) = 1). This
solution is satisfiable in the original formula as well, so STP terminates since it has
found a true satisfying assignment.

However, suppose that STP finds the solution i = 0 and vi = 1. Under this
solution, the original formula evaluates to (read(A, 0) = 0) ∧ (read(A, 0) = 1),
which gives 0 = 1. Hence, the solution to the under-constrained formula is not
a solution to the original formula. When this happens, it must be because some
array axiom was violated. STP adds array axioms to the formula and solves again
until it gets a correct result. There are many policies for adding axioms, any of
which is correct and will terminate so long as all of the axioms are added in the
worst case. The current policy, which seems to work well, is to find an array index
term for which at least one axiom is violated, then add all of the axioms involving
that term. In our example, it will add the axiom i = 0 ⇒ read(A, i) = read(A, 0).
Then, the process of finding a satisfying assignment is repeated, by calling the SAT
solver on the new under-constrained formula. The result must satisfy the newly
added axioms, which the previous assignment violated, so the algorithm will not
repeat assignments and will not violate previously added axioms. This process must
terminate since there are only finitely many array axioms.

In the worst case, the algorithm will add all n(n − 1)/2 array axioms, at which
time it is guaranteed to return a correct result because there are no more axioms
it can violate. However, in practice, this loop will often terminate quickly because
the formula can be proved unsatisfiable without all the array axioms, or because it
luckily finds a true satisfying assignment without adding all the axioms.

3.5 Boolean and mathematical simplifications

In addition to the above mentioned optimizations, STP implements several boolean
and mathematical identities. These identities, or simplifications, also dramatically
reduce the size of the input, before it is fed to the SAT solver. Some example
identities include the associativity and commutativity laws for addition and multi-

ACM Journal Name, Vol. V, No. N, February 2008.

16 · Cristian Cadar et al.

Solver Total Time Timeouts

CVCL 60,366s 546
STP (no optimizations) 3,378s 36
STP (substitution) 1,216s 1
STP (refinement) 624s 1
STP (simplifications) 336s 0
STP (subst+refinement) 513s 1
STP (simplif+subst) 233s 0
STP (simplif+refinement) 220s 0
STP (all optimizations) 110s 0

Table I. Performance of STP and CVCL on a regression suite of 8495 test cases taken from our test
programs. Queries time out (are aborted) after 60 seconds, which underestimates performance
differences, since they could run for much longer. Using this conservative estimate, fully optimized
STP is roughly 30X faster than the unoptimized version and 550X faster than CVCL and has no
timeouts.

plication, distribution of multiplication by constants over addition, and the combi-
nation of like terms (e.g., x+(−x) is simplified to 0). Simplifications play a crucial
role in STP’s efficiency and robustness. Instead of listing all the simplifications
implemented in STP, we discuss the value added by simplifications, as well as their
pitfalls, which may not be immediately apparent.

The simplifications in STP can be classified into two categories: (1) those that
cause the input DAG (Directed Acyclic Graph) to blow-up (i.e. the number of nodes
in the output DAG is typically much larger than in the input, often quadratic in
size), and (2) those that typically do not cause such blow-up. We refer to the
identities falling in the former category as blow-up simplifications, and we need to
be very careful when deciding whether they should be applied. As an example,
consider the quadratic blow-up of a thousand node DAG into a million node DAG.
Such an increase can often be lethal for either the subsequent simplifications or for
the SAT solver itself, and so in this case the simplification should not be applied.
An example of a blow-up simplification is the distributivity law of multiplication
over addition. This law often increases the DAG size. For example, consider the
input DAG (x + y)n, where (x + y) is a shared expression. The output after
the transformation is xn + nxn−1y + ... + yn. This transformation breaks the
sharing, which in turns increases the DAG significantly, becoming problematic for
subsequent stages. On the other hand, the distributivity law is very useful when
one of the multiplicands is a constant, often allowing STP to combine like terms.
The lesson learned here is that the DAG size (usually highly determined by the
amount of sub-expression sharing) plays a critical role in determining whether a
simplification should be applied.

Consistent with this observation, simplifications that are guaranteed to reduce the
size of the DAG should always be applied. Two such simplifications are constant
folding and constant propagation. In constant folding, terms such as 2 + 3 are
simplified to 5 (another example is reducing 0@0 to 00, where @ is the concatenation
operator). In constant folding, values of known constants are substituted in more
complex expressions. For example, consider an input (x = 5) ∧ (x + y + z = 7).
Replacing x with 5 in (x + y + z = 7) is an instance of constant propagation.

These simplification can have a huge impact on subsequent stages of STP, as

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 17

shown by the experimental results in Section 3.6. For example, consider a con-
straint involving an array read, of the form A[x] = 2. If the constant folding and
propagation simplifications can infer that x is a constant and this fact is propagated
to the subsequent array optimizations, this constraint would go directly into the
substitution map, instead of generating the more expensive array read axioms.

3.6 Measured performance

The optimizations outlined in Sections 3.4 and 3.5 have made it possible to deal
with fairly large constant arrays when there are relatively few non-constant index
expressions, which is sufficient to permit considerable progress in using EXE on
real examples.

Table I gives experimental measurements for these optimizations. The experi-
ment consists of running different versions of STP and our old solver, CVCL, over
the performance regression suite we have built up of 8495 test cases taken from our
test programs. The experiments for all solvers were run on a Pentium 4 machine
at 3.2 GHz, with 2 GB of RAM and 512 KB of cache. The table gives the times
taken by CVCL, baseline STP with no optimizations, STP with a subset of all opti-
mizations enabled, and STP with full optimizations, i.e. substitution, array-based
refinement, and simplifications. The third column shows the number of examples
on which each solver timed out. The timeout was set at 60 seconds, and is added
as penalty to the time taken by the solver (but in fact causes us to grossly under-
estimate the time taken by CVCL and earlier versions of STP since they could run
for many minutes or even hours on some of the examples).

The baseline STP is nearly 20 times faster than CVCL, and more interestingly,
times out in far fewer cases. The fully optimized version of STP is about 30 times
faster than the unoptimized version, almost 550 times faster than CVCL, and there
are no timeouts.

4. EXE OPTIMIZATIONS

This section presents optimizations EXE uses and measures their effectiveness on
five benchmarks. We first present two optimizations: caching constraints to avoid
calling STP (§ 4.1), and removing irrelevant constraints from the queries EXE
sends to STP (§ 4.2). We then measure the cumulative improvement of these
optimizations, and provide an empirical feel for what symbolic execution looks
like, including the time spent in various parts of EXE, and a description of the
symbolic slice through the code (§ 4.3). Finally, we discuss and measure EXE’s
search heuristics (§ 4.4).

4.1 Constraint caching

EXE caches the result of satisfiability queries and constraint solutions in order to
avoid calling STP when possible. This cache is managed by a server process so that
multiple EXE processes (created by forking at each conditional) can coordinate.
Before invoking STP on a query q, an EXE process prints q as a string, computes
an MD4 cryptographic hash of this string, and sends this hash to the server. The
server checks its persistent cache (a file) and if it gets a hit, returns the result. If
not, the EXE process does a local STP query and then sends the (hash, result)
pair back to the server. Constraint solutions are cached in a similar way.

ACM Journal Name, Vol. V, No. N, February 2008.

18 · Cristian Cadar et al.

4.2 Constraint independence optimization

This section describes one of EXE’s most important optimizations, constraint in-

dependence, which exploits the fact that we can often divide the set of constraints
EXE tracks into multiple independent subsets of constraints. Two constraints are
considered to be independent if they have disjoint sets of operands (i.e. disjoint
sets of array reads).

For example, assume EXE tracks the following set of three constraints:

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4]) ∧ (A[7] = A[8])

We can divide this set into two subsets of independent constraints

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4])

and

A[7] = A[8]

and solve them separately. Breaking a constraint into multiple independent subsets
has two benefits. First, EXE can discard irrelevant constraints when it asks STP
if a constraint c is satisfiable, with a corresponding decrease in cost. Instead of
sending all the constraints collected so far to STP, EXE only sends the subset of
constraints sc to which c belongs, ignoring all other constraints. The worst case,
when no irrelevant constraints are found, costs no more than the original query
(omitting the small cost of computing the independent subsets).

Second, this optimization yields additional cache hits, since a given a subset of
independent constraints may have appeared individually in previous runs. Con-
versely, including all constraints vastly increases the chance that at least one is
different and so gets no cache hit. To illustrate, assume we have the following code
fragment, which operates on two unconstrained symbolic arrays A and B:

if (A[i] > A[i+1]) {

...

}

if (B[j] + B[j-1] == B[j+1]) {

...

}

There are four paths through this code; EXE will thus create four processes. After
forking and following each branch, EXE checks if the path is satisfiable. Without
the constraint independence optimization, each of these four satisfiability queries
will differ and miss in the cache. However, if the optimization is applied, some
queries repeat. For example, when the second branch is reached, two of the four
queries will be

(A[i] > A[i + 1]) ∧ (B[j] + B[j − 1] = B[j + 1])

and

(A[i] ≤ A[i + 1]) ∧ (B[j] + B[j − 1] = B[j + 1])

which both devolve to

B[j] + B[j − 1] = B[j + 1]

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 19

since, in each query, the first constraint is unrelated to the last one, and its satisfi-
ability was already determined when EXE reached the first branch.

Real programs often have many independent branches, which introduce many
irrelevant constraints. These add up quickly. For example, assuming n consecutive
independent branches (the example above is such an instance for n = 2), EXE will
issue 2(2n−1) queries to STP (for each if statement, we issue two queries to check
if both branches are possible). The optimization exponentially reduces this query
count to 2n (two queries the first time we see each branch), since the rest of the
time we find the result in the cache.

We compute the constraint independence subsets by constructing a graph G,
whose nodes are the set of all array reads used in the given set of constraints. For
the first example in the section, the set of nodes is {A[1], A[2], A[3], A[4], A[7],
A[8]}. We add an edge between nodes ni and nj of G if and only if there exists
a constraint c that contains both as operands. Once the graph G is constructed,
we apply a standard algorithm to determine G’s connected components. Finally,
for each connected component, we create a corresponding independent subset of
constraints by adding all the constraints that contain at least one of the nodes in
that connected component. At the implementation level, we don’t construct the
graph G explicitly. Instead, we keep the nodes of G in a union-find structure (as
described in Chapter 21 of [Cormen et al. 2001]), which we update each time a
new constraint is added.

There are two additional issues that our algorithm has to take into account. First,
an array read may contain a symbolic index. In this case, we are conservative, and
merge all the elements of that array into a single subset. For example, if a constraint
refers to A[i], where i is a symbolic index, then the algorithm would merge all the
elements of A into the same subset. We could optimize this in the future by looking
at the constraints imposed on the symbolic index i. For example, if i could only
have values 1 or 2, then only A[1] and A[2] need to be merged.

The second issue relates to array writes. Since EXE and STP arrays are func-
tional, each array read explicitly contains an ordered list of all array writes per-
formed so far. Each array write is remembered as a pair consisting of the location
that was updated, and the expression that was written to that location. When
processing this list of array writes, we are again conservative, and merge all the
expressions written into the array (the right hand side of each array write) into
the subset of the original read. In addition, if any array write is performed at a
symbolic index, we merge all the elements of the array into a single subset.

4.3 Experiments

We evaluate our optimizations on five benchmarks. These benchmarks consist of
the three applications discussed in Section 6, bpf, pcre, and udhcpd, to which we
added two more: expat, an XML parser library, and tcpdump, a tool for printing
out the headers of packets on a network interface that match a boolean expression.

We run each benchmark under four versions of EXE: no optimization, caching
only, independence only, and finally with both optimizations turned on. As a
baseline, we run each benchmark for roughly 30 minutes using the unoptimized
version of EXE, and record the number of test cases n that this run generates. We
then run the other versions until they generate n test cases. All experiments are

ACM Journal Name, Vol. V, No. N, February 2008.

20 · Cristian Cadar et al.

bpf expat pcre tcpdump udhcpd

Test cases 7333 360 866 2140 328

None 30.6 28.4 31.3 28.2 30.4
Caching 32.6 30.8 34.4 27.0 36.4
Independence 17.8 25.2 10.0 24.9 30.5
All 10.3 26.3 7.5 23.6 32.1

STP cost 6.9 24.6 2.8 22.4 23.1

Table II. Optimization measurements, times in minutes. STP cost gives time spent in STP when
all optimizations are enabled.Tables III, IV, and V explore the fully optimized run (All) in more
detail.

bpf expat pcre tcpdump udhcpd

1 Cache hit rate 92.8% 0% 83% 35% 9.1%
2 Hit rate w/o independence 0.1% 0% 17.5% 12.6% 9.1%
3 Avg. # of independent subsets 19 2,824 122 13 1

4 Independence overhead 0m 0m .1m 0m 0m
5 Cache lookup cost 1.1m 1.2m 1.9m 0.4m 2.1m
6 % of lookup spent printing 72% 96% 84% 90% 95%

Table III. Optimization breakdown

performed on a dual-core 3.2 GHz Intel Pentium D machine with 2 GB of RAM,
and 2048 KB of cache.

Table II gives the number of test cases generated, as well as the runtime for each
optimization combination. Full optimization (“All”) significantly sped up two of
five benchmarks: bpf by roughly a factor of three, and pcre by more than a factor
of four. Both tcpdump and expat had marginal improvements (20% and 7% faster
respectively), but udhcpd slows down by 5.6%. As the last row shows, with the
exception of pcre, the time spent in STP represents by far the dominant cost of
EXE checking.

Table III breaks down the full optimization run. As its first three rows show,
caching without independence is not a win — its overhead (see Table II) actually
increases runtime for most applications, varying between 6.5% for bpf and 19.7%
for pcre. With independence, the hit rate jumps sharply for both bpf and pcre

(and, to a lesser extent, tcpdump), due to its removal of irrelevant constraints. The
other two applications show no benefit from these optimizations — udhcpd has
no independent constraints and expat has no cache hits. The average number of
independent subsets (row 3) shows how interdependent our constraints are, varying
from over 2,800 subsets for expat to only 1 (i.e., no independent constraints) for
udhcpd.

The next three rows (4–6) measure the overhead spent in various parts of EXE.
Reassuringly, the cost of independence is near zero. On the other hand, cache
lookup overhead (row 5) is significant, due almost entirely to our naive implemen-
tation. On each cache lookup (§ 4.1), EXE prints the query as a string and then
hashes it. As the table shows (row 6) the cost of printing the string dominates all
other cache lookup overheads. Obviously, we plan to eliminate this inefficiency in
the next version of the system.

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 21

bpf expat pcre tcpdump udhcpd

1 # of queries (cache misses) 163K 5K 188K 22K 4K
2 Total # of constraints 0.4M 9.6M 3.5M 1.3M 0.6M
3 Total # of nodes 2.0M 32.7M 17.8M 20.7M 431.7M
4 # non-linear constraints 4K 11K 96K 343K 508K
5 % constraints non-linear 0.9% 0.1% 2.8% 27.1% 81.1%
6 Reads from symbolic array 0.4M 11.8M 3.8M 1.6M 4.0M
7 % sym. array reads with sym. index 0.3% 0.3% 2.9% 7.8% 62.9%
8 Writes to symbolic array 62 2.3M 0.7M 0 0
9 % sym. array writes with sym. index 100% 0% 1.8% 0% 0%

Table IV. Dynamic counts from queries sent to STP.

bpf expat pcre tcpdump udhcpd

1 Symbolic input size (bytes) 96 10 16 84 548
2 Total statements run (not unique) 298,195 41,345 423,182 40,097 15,258
3 % of statements symbolic 29.2% 8.5% 34.7% 41.7% 23.6% %

4 Explicit symbolic branch points 77,024 1,969 98,138 11,425 888

5 % with both branches feasible 11.3% 19.3% 0.9% 19.4% 52.8%
6 Avg. # symbolic branches per path 38.33 43.44 55.72 103.37 200.14

7 Symbolic checks 1,490 904 4,451 552 1,535
8 Pointer concretizations 0 0 0 73 0
9 Symbolic args. to uninstr. calls 0 0 0 0 0

Table V. Dynamic counts from EXE execution runs.

Table IV breaks down the queries sent to STP. The first three rows give the total
number of: queries, constraints, and nodes. These last two numbers give a feel
for query complexity: bpf is the easiest case (a small number of constraints, with
roughly five nodes per constraint), whereas udhcpd is the worst with 688 nodes per
constraint.

The next two rows give the number of non-linear constraints (row 4) and their
percentage (row 5) of the total constraints (from row 2). Non-linear constraints
contain one or more non-linear operators — multiplication, division, or modulo —
whose right hand side is not a constant power of two. In general, the more non-
linear operations, the slower constraint solving gets, as the SAT circuits that STP
constructs for these operations are expensive. For our benchmarks, only udhcpd

has a large number of non-linear constraints, which translates into a large amount
of time spent in STP.

The final four rows (6–9) give the number of reads and writes from and to sym-
bolic data blocks, and the percentage of these that use symbolic indexes. While
there are many array operations, with the exception of udhcpd, very few use sym-
bolic indexes, which explains why the STP array substitution optimization (§ 3.4)
was such a big win.

Table V gives more dynamic execution counts from the full optimization runs.
The first row gives the number of bytes initially marked as symbolic; this represents
the size of the symbolic filter and data in bpf, the size of the XML expression to
be parsed in expat, the packet length in udhcpd and tcpdump, and the regular
expression pattern length in pcre.

ACM Journal Name, Vol. V, No. N, February 2008.

22 · Cristian Cadar et al.

The next row (row 2) gives the total number of dynamic statements executed
(assignments, branches, parameter and return value passing) across all paths ex-
ecuted by EXE, while the next (row 3) gives the percentage that are symbolic.
For our benchmarks, this percentage varies from only 8.46% for expat to 41.70%
for tcpdump. This numbers are encouraging and validate our approach of mixing
concrete and symbolic execution, which lets us ignore a large amount of code in the
programs we check.

The next three rows (4–6) look at symbolic branches, including the implicit
branches EXE does for checking. Row 4 gives the total number of explicit symbolic
branch points and row 5 the percentage of these branch points that had both
branches feasible. (EXE pruned the other branches because the path’s constraints
were not satisfiable.) On our benchmarks, EXE was able to prune more than 80% of
the branches it encountered, with the exception of udhcpd where it pruned (only)
47.18% of the branches. These results are reassuring for scalability – while the
potential number of paths in the search space grows exponentially with the number
of symbolic branches, the actual growth is much smaller: real code appears to have
many dependencies between program points.

Row 6 measures the average number of symbolic branches (both implicit and
explicit) per path. This number is large: ranging from around 38 up to 200
branches, which means that random guessing would have a hard time satisfying
all the branches to get to the end of one path, much less the hundreds or thousands
that EXE can systematically explore.

Row 7 gives the total number of times EXE performed a symbolic check. (In
addition to these checks, EXE performs many more similar concrete checks.) Row
8 shows how many times EXE had to concretize a pointer because it encountered
a symbolic dereference of a symbolic pointer (§ 3.2). This situation occurs in only
one of our five benchmarks, tcpdump. Finally, row 9 shows that no uninstrumented
functions were called with symbolic data as arguments.

4.4 Search heuristics

When EXE forks execution, it must pick which branch to follow first. By default,
EXE uses depth-first search (DFS), picking randomly between the two branches.
DFS keeps the current number of processes small (linear in the depth of the process
chain), but works poorly in some cases. For example, if EXE encounters a loop with
a symbolic variable as a bound, DFS can get “stuck” since it attempts to execute
the loop as many times as possible, thus potentially taking a very long time to exit
the loop.

In order to overcome this problem, we use search heuristics to drive the execution
along “interesting” execution paths (e.g., that cover unexplored statements). After
a fork call, each forked EXE process calls into a search server with a description
of its current state (e.g., its current file, line number, and backtrace) and blocks
until the server replies. The search server examines all blocked processes and picks
the best one in terms of some heuristic that is more global than simply picking a
random branch to follow. Our current heuristic uses a mixture of best-first and
depth-first search. The search server picks the process blocked at the line of code
run the fewest number of times and then runs this process (and its children) in a
DFS manner through four branches, picking a random branch at each point where

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 23

Fig. 8. Best-first search vs. depth-first search.

execution down both edges is feasible. It then picks another best-first candidate and
iterates. This is just one of many possible heuristics, and the server is structured
so that new heuristics are easy to plug in.

We experimentally evaluate our best-first search (BFS) heuristic in the context of
one of our benchmarks, the Berkeley Packet Filter (BPF) (described in more detail
in § 6.1). We start two separate executions of EXE, one using DFS and the other
using BFS. We let both EXE executions run until they achieved full basic block
coverage. Figure 8 compares BFS to DFS in terms of basic block coverage. (For
visual clarity the graph only shows block coverage for the first 1500 test cases, as
only a few blocks are missing from the coverage by these test cases.) BFS converges
to full coverage more than twice as fast as DFS: 7,956 test cases versus 18,667. More
precisely, EXE gets 91.74% block coverage, since there are several basic blocks in
BPF that EXE cannot reach, such as dead code (e.g. the failure branch of asserts),
or branches that do not depend on the input marked as symbolic.

Figure 9 then compares EXE against random testing, also in terms of basic block
coverage. We generate one million random test cases of the same size as those
generated by EXE, and run these random test cases through a lightly-instrumented
version of BPF that records basic block coverage. These test cases only cover 56.96%
of the blocks in BPF; EXE achieves the same coverage in only 75 tests when using
BFS. Even more strikingly, these million random test cases yield only 131 unique
paths through the code, while each of EXE’s test cases represents a unique path.
Most importantly, random testing did not have a wall clock time advantage over
BFS: random testing with a million test cases took over four times as long as
running BPF through EXE with BFS.

5. LIMITATIONS

This section summarizes the most important limitations of EXE and STP. On
the constraint solving side, STP neither supports floating point arithmetic nor
provides pointers. All other operations present in C are supported, albeit non-
linear operations such as multiplication and modulo are often very slow.

ACM Journal Name, Vol. V, No. N, February 2008.

24 · Cristian Cadar et al.

Fig. 9. EXE with best-first search vs. random testing.

Since STP does not provide pointers, EXE maps pointer dereferences to array
references at some offset, by tracking the base object of each pointer in the program,
as discussed in Section 3.2. As a consequence of this (but also because of the
interaction with uninstrumented code, as discussed below), EXE may not be always
able to determine the underlying object of the pointer being dereferenced, which in
turn leads it to concretize part of the symbolic pointer expression, as discussed in
more detail in Section 3.2. When this happens, EXE may discard certain execution
paths, but will continue to make progress. Note that a straightforward remedy to
this problem would be to model memory as a single STP array indexed by 32-bit
bitvectors, but this approach is currently too slow to be practical.

Interaction with uninstrumented code may lead to EXE missing some constraints,
which in turn may lead it to explore impossible paths. For this reason, our approach
has been to instrument all the code on which the program being checked depends,
including any standard libraries. The approach of mixed concrete and symbolic
execution, combined with other optimizations presented in this paper, has made
this approach feasible, as shown by our experimental results in Section 6.

Last but not least, an important limitation of EXE is that it does not directly
support data blocks of symbolic size. To be precise, EXE technically does support
symbolic sizes, but these are usually immediately “concretized” while running the
program. As an illustration, consider the following for loop, where n is a symbolic
unsigned integer representing the size of the array a:

for (i=0; i < n; i++)

a[i] = i;

Before the first iteration through the loop, EXE will encounter the branch con-
dition 0 < n. As a result, it will fork execution, setting the value of n to 0 on one
path, and adding the constraint n >= 1 on the other. On the latter path, after
the first iteration is executed, EXE will encounter the branch condition 1 < n, and
again, it will fork execution, setting the value of n to 1 on one path, and adding the
constraint n >= 2 on the other. Thus, the loop is explored in an iterative deepening

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 25

s[0].code = BPF STX; // also: (BPF LDX|BPF MEM)
s[0].k = 0xfffffff0UL;
s[1].code = BPF RET;

Fig. 10. A BPF filter of death

manner, by successively setting the value of the length n to 0, 1, 2 and so on. Thus,
when running our benchmarks, we usually set the length of the symbolic input to a
fixed (larger) concrete value. Making symbolic execution effectively handle inputs
of a symbolic size is still an open problem in the context of real applications. One
direction that we plan to explore in the future is the inference of loop invariants
combined with support for universal quantifiers in the constraint solving domain.

6. USING EXE TO FIND BUGS

This section presents three case studies that use EXE to find bugs in: (1) two
packet filter implementations, (2) the udhcpd DHCP server, and (3) the pcre Perl
compatible regular expressions library. We also summarize a previous effort of
applying EXE to file system code.

6.1 Packet filters

Many operating systems allow programs to specify packet filters which describe
the network packets they want to receive. Most packet filter implementations are
variants of the Berkeley Packet Filter (BPF) system. BPF filters are written in
a pseudo-assembly language, downloaded into the kernel, validated by the BPF
system, and then applied to incoming packets. We used EXE to check the packet
filter in both FreeBSD and Linux. FreeBSD uses BPF, while Linux uses a heavily
modified version of it. EXE found two buffer overflows in the former and four errors
in the latter. BPF is one particularly hard test of EXE — small, heavily-inspected
and mature code, written by programmers known for their skill.

A filter is an array of instructions specifying an opcode (code), a possible memory
offset to read or write (k), and several other fields. The BPF interpreter iterates
over this filter, executing each opcode’s corresponding action. This loop is the main
source of vulnerabilities but is hard to test exhaustively (e.g., hitting all opcodes
even once using random testing takes a long time).

We used a two-part checking process. First, we marked a fixed-sized array of
filter instructions as symbolic and passed it to the packet filter validation routine
bpf validate, which returns 1 if it considers a filter legal. For each valid filter, we
then mark a fixed-size byte array (representing a packet) as symbolic and run the
filter interpreter bpf filter on the symbolic filter with the symbolic packet, thus
checking the filter against all possible data packets of that length.

This checking illustrates one of EXE’s interesting features: it turns interpreters
into generators of the programs they can interpret. In our example, running the
BPF interpreter on a symbolic filter causes it to generate all possible filters of that
length, since each branch of the interpreter will fork execution, adding a constraint
corresponding to the opcode it checked.

Figure 10 shows one of the two filters EXE found that cause buffer overflows

ACM Journal Name, Vol. V, No. N, February 2008.

26 · Cristian Cadar et al.

// Code extracted from bpf validate. Rejects
// filter if opcode’s memory offset is more than
// BPF MEMWORDS.
// Forgets to check opcodes LDX and STX!
if((BPF CLASS(p−>code) == BPF ST
| | (BPF CLASS(p−>code) == BPF LD &&

(p−>code & 0xe0) == BPF MEM))
&& p−>k >= BPF MEMWORDS)
return 0;

. . .
// Code extracted from bpf filter: pc points to current
// instruction. Both cases can overflow mem[pc->k].

case BPF LDX|BPF MEM:
X = mem[pc−>k]; continue;

. . .
case BPF STX:

mem[pc−>k] = X; continue;

Fig. 11. The BPF code Figure 10’s filter exploits.

// other filters that cause this error:
// code = (BPF LD|BPF B|BPF IND)
// code = (BPF LD|BPF H|BPF IND)
s[0].code = BPF LD|BPF B|BPF ABS;
s[0].k = 0x7fffffffUL;
s[1].code = BPF RET;
s[1].k = 0xfffffff0UL;

Fig. 12. A Linux filter of death

in FreeBSD’s BPF. The bug can occur when the opcode of a BPF instruction
is either BPF STX or BPF LDX | BPF MEM. As shown in Figure 11, bpf validate

forgets to bounds check the memory offset given by these instructions, as it does for
instructions with opcodes BPF ST or BPF LD | BPF MEM. This missing check means
these instructions can write or read arbitrary offsets off the fixed-sized buffer mem,
thus crashing the kernel or allowing a trivial exploit.

Linux had a trickier example. EXE found three filters that can crash the kernel
because of an arithmetic overflow in a bounds check, shown in Figure 12. As with
BPF, the offset field (k) causes the problem. Here, the code to interpret BPF LD

instructions eventually calls the function skb header pointer, which computes an
offset into a given packet’s data and returns it. This routine is passed s[0].k as
the offset parameter, and values 4 or 2 as the len parameter. It extracts the size
of the current message header into hlen and checks that offset + len ≤ hlen.
However, the filter can cause offset to be very large, which means the signed
addition offset + len will overflow to a small value, passing the check, but then
causing that very large offset value to be added to the message data pointer. This
allows attackers to easily crash the machine. This error would be hard to find with
random testing. Its occurrence in highly-visible, widely-used code, demonstrates
that such tricky cases can empirically withstand repeated manual inspection.

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 27

static inline void *
skb header pointer(struct sk buff *skb,

int offset, int len, void *buffer) {

int hlen = skb headlen(skb);

// Memory overflow. offset=s[0].k; a filter
// can make this value very large, causing
// offset + len to overflow, trivially passing
// the bounds check.
if (offset + len <= hlen)

return skb−>data + offset;

Fig. 13. The Linux code Figure 12’s filter exploits.

Offset Hex value

0000 0000 0000 0000 0000 0000 0000 0000 0000

0010 0000 0000 0000 0000 0000 0000 5A00 0000

....

00F0 2100 00F9 0000 0000 0000 0000 0000 0000

....

01E0 0000 0000 0000 0000 0000 0000 2734 0000

01F0 0000 0000 0000 0000 0000 0000 0000 0000

0200 0000 0000 0000 0000 0000 0000 0000 3500

0210 030F 0000 0000 0000 0000 0000 0000 0000

0220 0032 0036

Fig. 14. An EXE generated packet that causes an out-of-bounds read in udhcpd.

6.2 A complete server: udhcpd

We also checked udhcpd-0.9.8, a clean, well-tested user-level DHCP server. We
marked its input packet as symbolic, and then modified its network read call to
return a packet of at most 548 bytes. After running udhcpd long enough to generate
596 test cases, EXE detected five different memory errors: four-byte read overflows
at lines 213 and 214 in dhcpd.c and three similar errors at lines 79, 94, and 99 in
options.c. These errors were not found when we tested the code using random
testing. EXE generated packets to trigger all of these errors, one of which is shown
in Figure 14. We confirmed these errors by rerunning the concrete error packets
on an uninstrumented version of udhcpd while monitoring it with valgrind, a
tool that dynamically checks for some types of memory corruption and storage
leaks [Nethercote and Seward 2003].

Upon investigating the cause of these errors, we discovered that the get option

method in options.c lacks several bounds checks. This method extracts the option
with the given code from a given packet’s option buffer. Let us consider one rep-
resentative code snippet, shown in Figure 15. Note that options in DHCP packets
are stored in one large buffer of variable-size entries, where the first byte of each
entry stores the option’s code, the second the length len of the option data, with
the next len bytes being the option data itself. EXE automatically generated test
packets which cause the code in Figure 15 to overflow the size of the originally allo-

ACM Journal Name, Vol. V, No. N, February 2008.

28 · Cristian Cadar et al.

1 : // optionptr points to the base of the packet’s option buffer
2 : // this buffer is length bytes long
3 : // the below code attempts to return the data associated with the target code
4 : while(i < length) { // effective behavior of loop
5 : /* . . . */
6 : /* if we find an option entry with code being searched for. . . */
7 : if (optionptr[i + OPT CODE] == target code) { // OPT CODE = 0
8 : if (i + 1 + optionptr[i + OPT LEN] >= length) { // OPT LEN = 1
9 : /* log error */
10: return NULL;
11: }
12: return optionptr + i + 2;
13: }
14: /* . . . */
15: }

Fig. 15. Snippet of code from the get option function in udhcpd.

[^[\0^\0]*−?]{\0 [\−\‘[\0^\0]\‘]{\0 (?#)\?[[[\0\0][\0^\0]]\0
[*−\‘[\0^\0]\‘−?]\0 [*−\‘[\0^\0]\‘−?]\0 [\−\‘[\0^\0]\‘−]\0
(?#)\?[[[\0\0]\−]{\0 (?#)\?[[[\0\0]\−]\0 (?#)\?[[[\0\0]\[]\0
(?#)\?[:[[\0\0]\−]\0 (?#)\?[[[\0\0]\−]\0 (?#)\?[[[\0\0]\]\0
[*−\‘[\0^\0]\‘−?]{\0 (?#)\?[[[\0\0][\0^\0]−]\0 (?#)\?[[[\0\0][\0^\0]\]\0

Fig. 16. EXE-generated regular expression patterns that cause out-of-bounds writes (leading to
aborts in glibc on free) when passed as the first argument to pcre compile.

cated packet in three different places. Conceptually, these three overflows stem from
two errors. The first is that the loop invariant of i < length does not guarantee
that i + OPT LEN = i + 1 will be in-bounds, hence such a bounds check should
be included at the beginning of the conditional statement on line 7. More impor-
tantly, however, consider the case in which optionptr[i + OPT LEN] = 0 and i

= length - 2. The conditional on line 8 will evaluate to false, but the function
will return a pointer to the first byte past the end of the buffer. This particular
case is indicative of a larger issue with trusting the length provided in the option
entry. Even if the returned pointer does not point outside of the allocated buffer,
the client of this function is expecting to receive a pointer to between one and four
bytes of memory, depending on the code. Hence a valid returned pointer can still
translate into an overflowing read after the function has returned. This is exactly
why we found out-of-bounds reads: the caller of get option memcpy-ed four bytes
starting at the first byte past the end of the buffer. A potential fix might involve
looking up the expected length of the option data given its code and comparing
it to the one provided in the packet, e.g. enforcing the requirement that codes
corresponding to IP address options always be four bytes long. Note that similar
bounds issues were found in other parts of the get option function.

6.3 Perl Compatible Regular Expressions

The pcre library [PCRE] is used by several popular open-source projects, including
Apache, PHP, and Postfix. For speed, pcre provides a routine pcre compile, which

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 29

compiles a pattern string into a regular expression for later use. This routine has
been the target of security advisories in the past [PCRE - CERT 2005].

We checked this routine by marking a null-terminated pattern string as symbolic
and then passing it to pcre compile. EXE quickly found a class of issues with this
routine in a recent version of pcre (6.6). The function iterates over the provided
pattern twice, first to do basic error checking and to estimate how much memory
to allocate for the compiled pattern, and second to do actual compilation. The
bugs found included overflowing reads in the check posix syntax helper function
(pcre compile.c:1361-1363), called during the first pass, as well as more dangerous
overflowing reads and writes in the compile regex and compile branch helpers
(illegal writes on pcre compile.c lines 3400-3401 and 3515-3616), which are called
during the compilation pass. While the first problem may appear to be an innocent
read past the end of the buffer, it allows illegal expressions to enter the second
pass, causing more serious issues. The substring “[\0^\0]” is especially dangerous
because strings which end with this sequence will cause pcre to skip over both null
characters and continue parsing unallocated or uninitialized memory. Figure 16
show a representative sample of EXE-generated patterns that trigger overflows in
pcre, which in turn cause glibc aborts.

Let us discuss in greater detail the issue in which PCRE reads past the end of
the pattern buffer. Consider the code snippet shown in Figure 17, in which ptr

points to the indicated sequence of characters. Since the character at ptr is a [, the
check posix syntax function is called. Inside this function, ptr is incremented and
terminator is set to the current character, the null character. Without checking
whether it has reached the end of a string, the function again increments the pointer.
Finding a ^ there, it increments ptr yet again. Hence, ptr now points to the second
null character in the pattern. The second conditional in the function evaluates to
true, as the current character is equal to the terminator (both are \0) and the next
character is a]. The new value of ptr, which has been incremented over one null
character and which now points to a second, is then written back to the caller.
Since check posix syntax now returns true, the original conditional evaluates to
true. Therefore, ptr is incremented past the second null character and parsing
continues.

In most cases, the error checking in the first pass later rejects this regular ex-
pression and hence the compilation pass never begins: EXE found many such test
cases in which the extent of the damage was only a read off the end of the pat-
tern buffer. However, EXE also found several test cases (shown in Figure 16) in
which the characters following the string termination character were such that the
pattern was not flagged as invalid in the first pass. In the compilation pass, these
patterns then triggered several writes past the end of the buffer allocated to store
the compiled regular expression. This caused sufficient heap corruption to cause
glibc to abort when the buffer was later freed. PCRE reports errors like “PCRE
compilation failed at offset 13: internal error: code overflow,” but does not prevent
the buffer overflow from occurring (and glibc from aborting).

The author of the library fixed the bug soon after being notified, and so the latest
version of pcre as of this writing (7.0) does not exhibit this problem.

ACM Journal Name, Vol. V, No. N, February 2008.

30 · Cristian Cadar et al.

// ptr points to current location in the string being parsed
// consider: ptr == “[\0^\0]. . .”;
if (*ptr == ’[’ && check posix syntax(ptr, &ptr, &compile block)) // evaluates to true
{

ptr++; // ptr now points to], and parsing continues
/* . . . */

}

static BOOL
check posix syntax(const uschar *ptr, const uschar **endptr, compile data *cd)
{

int terminator = *(++ptr); // terminator set to \0
if (*(++ptr) == ’^’) ptr++; // ptr now points to second \0
/*. . .*/
if (*ptr == terminator && ptr[1] == ’]’) { // evaluates to true

*endptr = ptr; // ptr local in caller now points to second \0
return TRUE;

}
return FALSE;

}

Fig. 17. Snippet of code from PCRE.

6.4 Cross-checking applications with EXE

One interesting application of EXE is the cross-checking of a function and its sup-
posed inverse, as well as the cross-checking of several implementations of the same
function.

Given two routines f and f−1, intended to be inverses of each other, we can
check whether this is the case by making their inputs symbolic and writing an assert
statement of the form assert(f(f−1(x)) == x). As mentioned in Section 2, when
EXE hits an assert it will systematically search the set of constraints to try to
violate the condition asserted (as with any conditional). An assert passes only if
EXE could not find any input that would violate it. This means that if no errors
occurred in EXE, and STP solved all gathered constraints, the two routines are
proven to be inverses.

For example, networking code uses the functions ntohl and htonl to byte-swap
32-bit values between “host” and “network” order. As Figure 18 shows, using
EXE to check that a given implementation does this correctly for all inputs is
trivial. Note that if the system terminates, then ntohl is proven to invert htonl

for all 32-bit inputs (as is htonl in the opposite direction). This leads to the
startling results that if either ntohl or htonl is correct, then passing the assertion
equals full verification of total correctness! When applicable, such a verification
method is much more practical than the traditional approach of theorem proving
plus correctness specification.

In a similar fashion, we can ask EXE to find places where two routines f and
f’ intended to implement the same function fail to do so by making their inputs
symbolic and asserting assert(f(x) == f’(x)). Routines with identical function-
ality but different implementations appear commonly in different implementations
of core libraries. EXE can be used to cross-check these against each other to ruth-

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 31

#include <assert.h>

#include <netinet/in.h>

void main(void) {
int x;
make symbolic(x);
assert(htonl(ntohl(x)) == x);

}

Fig. 18. Cross-checking of the form f−1(f(x)) = x that verifies ntohl and htonl correctly invert
each other for all 32-bit inputs.

lessly search for inputs that lead to incompatible outputs. If it cannot find any
(and it terminates), then EXE has verified that no incompatibilities exist.

In a previous paper [Cadar and Engler 2005], we used EGT, a primitive version
of EXE, to cross-check three different implementations of printf. All implementa-
tions (intentionally) implemented only a subset of the ANSI C99 standard (e.g.,
one version was written for embedded devices). Our cross-checking methodology
was to mark the format string specifier as symbolic, generate test cases for each
implementation, and then cross-check the concrete test cases against glibc’s printf.
We found a total of 579 inputs that produced different behavior. As a single exam-
ple, one implementation of printf incorrectly handled the “’” specifier which should
comma-separate integer digits into groups of three. The exact test case was:

printf("%’d", -155209728);

// correct: -155,209,728

// observed: -15,5209,728

6.5 Generating disks of death

We previously used EXE to generate disk images for three file systems (ext2, ext3,
and JFS) that when mounted would crash or compromise the Linux kernel [Yang
et al. 2006]. At a high level, the checking worked as follows. We wrote a special
device driver that returned symbolic blocks to its callers. We then compiled Linux
using EXE and ran it as a user-level process (so fork would work) and invoked the
mount system call, which caused the file system to read symbolic blocks, thereby
driving checking.

We found bugs in all three file systems, demonstrating that EXE can handle
complex systems code. Further, these errors would almost certainly be beyond the
reach of random testing. For example, the Linux ext2 “read super block” routine
has over forty if-statements to check the data associated with the super block. Any
randomly-generated super block must satisfy these tests before it can reach even
the next level of error checking, much less triggering the execution of “real code”
that performs actual file system operations.

7. RELATED WORK

A shorter version of this paper appeared in the Proceedings of the 13th ACM
Conference on Computer and Communications Security, October 30 - November 3,

ACM Journal Name, Vol. V, No. N, February 2008.

32 · Cristian Cadar et al.

2006 [Cadar et al. 2006]. We described an initial, primitive version of EXE (then
called EGT) in an invited workshop paper [Cadar and Engler 2005]. EGT did not
support reads or writes of symbolic pointer expressions, symbolic arrays, bit-fields,
casting, sign-extension, arithmetic overflow, and our symbolic checks. We also gave
an overview of EXE in the file system checking paper [Yang et al. 2006] discussed
in Section 6.5. That paper took EXE as a given and used it to find bugs. In
contrast, both STP and EXE are contributions of this paper (and its preliminary
version [Cadar et al. 2006]), which we describe in more detail as well as focus on a
broader set of applications.

Simultaneously with our initial work [Cadar and Engler 2005], DART [Godefroid
et al. 2005] also generated test cases from symbolic inputs. DART runs the tested
unit code on random input and symbolically gathers constraints at decision points
that use input values. Then, DART negates one of these symbolic constraints to
generate the next test case. DART only handles integer constraints and devolves
to random testing when pointer constraints are used, with the usual problems of
missed paths.

The CUTE project [Sen et al. 2005] extends DART by tracking symbolic pointer
constraints of the form: p = NULL, p 6= NULL, p = q, or p 6= q. In addition, CUTE
tracks constraints formed by reading or writing symbolic memory at constant offsets
(such as a field dereference p→field), but unlike EXE it cannot handle symbolic
offsets. For example, the paper on CUTE shows that on the code snippet a[i] =

0; a[j] = 1; if (a[i] == 0) ERROR, CUTE fails to find the case when i equals
j, which would have driven the code down both paths. In contrast to both DART
and CUTE, EXE has completely accurate constraints on memory, and thus can
(potentially) check code much more thoroughly.

CBMC is a bounded model checker for ANSI-C programs [Clarke and Kroening
2003] designed to cross-check an ANSI C re-implementation of a circuit against
its Verilog implementation. Unlike EXE, which uses a mixture of concrete and
symbolic execution, CBMC runs code entirely symbolically. It takes (and requires)
an entire, strictly-conforming ANSI C program, which it translates into constraints
that are passed to a SAT solver. CBMC provides full support for C arithmetic and
control operations, as well as reads and writes of symbolic memory. However, it has
several serious limitations. First, it has a strongly-typed view of memory, which
prevents it from checking code that accesses memory through pointers of different
types. Second, because CBMC must translate the entire program to SAT, it can
only check stand-alone programs that do not interact with the environment (e.g.,
by using system calls or even calling code for which there is no source). Both of
these limits seem to prevent CBMC from checking the applications in this paper.
Finally, CBMC unrolls all loops and recursive calls, which means that it may miss
bugs that EXE can find and also that it may execute some symbolic loops more
times than the current set of constraints allows.

Larson and Austin [Larson and Austin 2003] present a system that dynamically
tracks primitive constraints associated with “tainted” data (e.g., data that comes
from untrusted sources such as network packets) and warns when the data could be
used in a potentially dangerous way. They associate tainted integers with an upper
and lower bound and tainted strings with their maximum length and whether the

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 33

string is null-terminated. At potentially dangerous uses of inputs, such as array
references or calls to the string library, they check whether the integer could be
out of bounds, or if the string could violate the library function’s contract. Thus,
as EXE, this system can detect an error even if it did not actually occur during
the program’s concrete execution. However, their system lacks almost all of the
symbolic power that EXE provides. Further, they cannot generate inputs to cause
paths to be executed; users must provide test cases and they can only check paths
covered by these test cases.

Static checking and static input generation. There has been much recent
work on static bug finding, including better type systems [DeLine and Fähndrich
2001; Foster et al. 2002; Flanagan and Freund 2000], static analysis tools [Foster
et al. 2002; Ball and Rajamani 2001; Coverity ; Das et al. 2002; Flanagan et al. 2002;
Bush et al. 2000; Wagner et al. 2000], and statically solving constraints to generate
inputs that would cause execution to reach a specific program point or path [Boyer
et al. 1975; Gotlieb et al. 1998; Ball 2004; Ball et al. 2001; Brumley et al. 2006].
The insides of these tools look dramatically different from EXE. An exception is
Saturn [Xie and Aiken], which expresses program properties as boolean constraints
and models pointers and heap data down to the bit level. Dynamic analysis requires
running code, static analysis does not. Thus, static tools often take less work to
apply (just compile the source and skip what cannot be handled), can check all
paths (rather than only executed ones), and can find bugs in code it cannot run
(such as operating systems code). However, because EXE runs code, it can check
much deeper properties, such as complex expressions in assertions, or properties
that depend on accurate value information (the exact value of an index or size of
an object), pointers, and heap layout, among many others. Further, unlike static
analysis, EXE has no false positives. However, we view the two approaches as
complementary: there is no reason not to use lightweight static techniques and
then use EXE.

Software Model Checking. Model checkers have been used to find bugs in
both the design and the implementation of software [Holzmann 1997; 2001; Brat
et al. 2000; Corbett et al. 2000; Ball and Rajamani 2001; Godefroid 1997; Yang
et al. 2004]. These approaches often require a lot of manual effort to build test
harnesses. However, to some degree, the approaches are complementary to EXE:
the tests EXE generates could be used to drive the model checked code, similar
to the approach embraced by the Java PathFinder (JPF) project [Khurshid et al.
2003]. JPF combines model checking and symbolic execution to check applications
that manipulate complex data structures written in Java. JPF differs from EXE
in that it does not have support for untyped memory (not needed because Java is
a strongly typed language) and does not support symbolic pointers.

Dynamic techniques for test and input generation. Past dynamic input
generation work seem to focus on generating an input to follow a specific path,
motivated by the problem of answering programmer queries as to whether control
can reach a specific statement or not [Ferguson and Korel 1996; Gupta et al. 1998].
EXE instead focuses on bug finding, in particular the problems of exhausting all
input-controlled paths and universal checking, neither addressed by prior work.

ACM Journal Name, Vol. V, No. N, February 2008.

34 · Cristian Cadar et al.

8. CONCLUSION

We have presented EXE, which uses robust, bit-level accurate symbolic execution
to find deep errors in code and automatically generate inputs that will hit these
errors. A key aspect of EXE is its modeling of memory and its co-designed, fast
constraint solver STP. We have applied EXE to a variety of real, tested programs
where it was powerful enough to uncover subtle and surprising bugs.

9. ACKNOWLEDGMENTS

We would like to thank Paul Twohey for his work on the regression suite, Martin
Casado for providing us tcpdump in an easy to check form, and Suhabe Bugrara,
Ted Kremenek, Darko Marinov, Adam Oliner, Ben Pfaff, and Paul Twohey for their
valuable comments.

This research was supported by National Science Foundation (NSF) CAREER
award CNS-0238570-001, Department of Homeland Security (DHS) grant FA8750-
05-2-0142, NSF grant CCR-0121403, and a Junglee Corporation Stanford Graduate
Fellowship.

REFERENCES

Ball, T. 2004. A theory of predicate-complete test coverage and generation. In Proceedings of
the Third International Symposium on Formal Methods for Components and Objects.

Ball, T. and Jones, R. B., Eds. 2006. Computer Aided Verification, 18th International Con-
ference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings. Lecture Notes in
Computer Science, vol. 4144. Springer.

Ball, T., Majumdar, R., Millstein, T., and Rajamani, S. K. 2001. Automatic predicate
abstraction of C programs. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation. ACM Press, 203–213.

Ball, T. and Rajamani, S. 2001. Automatically validating temporal safety properties of inter-
faces. In SPIN 2001 Workshop on Model Checking of Software.

Barrett, C. and Berezin, S. 2004. CVC Lite: A new implementation of the cooperating validity
checker. In CAV, R. Alur and D. A. Peled, Eds. Lecture Notes in Computer Science. Springer.

Barrett, C., Berezin, S., Shikanian, I., Chechik, M., Gurfinkel, A., and Dill, D. L. 2004.
A practical approach to partial functions in CVC Lite. In PDPAR’04 Workshop, Cork, Ireland.

Boyer, R. S., Elspas, B., and Levitt, K. N. 1975. Select – a formal system for testing and
debugging programs by symbolic execution. ACM SIGPLAN Notices 10, 6 (June), 234–45.

Brat, G., Havelund, K., Park, S., and Visser, W. 2000. Model checking programs. In IEEE
International Conference on Automated Software Engineering (ASE).

Brumley, D., Newsome, J., Song, D., Wang, H., and Jha, S. 2006. Towards automatic genera-
tion of vulnerability-based signatures. In Proceedings of the 2006 IEEE Symposium on Security
and Privacy.

Bryant, R. E., Lahiri, S. K., and Seshia, S. A. 2002. Modeling and verifying systems using
a logic of counter arithmetic with lambda expressions and uninterpreted functions. In Proc.
Computer-Aided Verification (CAV), E. Brinksma and K. G. Larsen, Eds. Springer-Verlaag,
78–92.

Bush, W., Pincus, J., and Sielaff, D. 2000. A static analyzer for finding dynamic programming
errors. Software: Practice and Experience 30, 7, 775–802.

Cadar, C. and Engler, D. 2005. Execution generated test cases: How to make systems code crash
itself. In Proceedings of the 12th International SPIN Workshop on Model Checking of Software.
A longer version of this paper appeared as Technical Report CSTR-2005-04, Computer Systems
Laboratory, Stanford University.

ACM Journal Name, Vol. V, No. N, February 2008.

EXE: Automatically Generating Inputs of Death · 35

Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., and Engler, D. 2006. EXE: Automatically

generating inputs of death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security.

Clarke, E. and Kroening, D. 2003. Hardware verification using ANSI-C programs as a reference.
In Proceedings of ASP-DAC 2003. IEEE Computer Society Press, 308–311.

Cook, B., Kroening, D., and Sharygina, N. 2005. Cogent: Accurate theorem proving for
program verification. In Proceedings of CAV 2005, K. Etessami and S. K. Rajamani, Eds.
Lecture Notes in Computer Science, vol. 3576. Springer Verlag, 296–300.

Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, and Zheng, H.

2000. Bandera: Extracting finite-state models from Java source code. In ICSE 2000.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001. Introduction to Algorithms.
The MIT Electrical Engineering and Computer Science Series. MIT Press/McGraw Hill.

Coverity. SWAT: the Coverity software analysis toolset. http://coverity.com.

Das, M., Lerner, S., and Seigle, M. 2002. Path-sensitive program verification in polynomial
time. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation. Berlin, Germany.

DeLine, R. and Fähndrich, M. 2001. Enforcing high-level protocols in low-level software. In
Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation.

Een, N. and Sorensson, N. 2003. An extensible SAT-solver. In Proc. of the Sixth International
Conference on Theory and Applications of Satisfiability Testing. 78–92.

Ferguson, R. and Korel, B. 1996. The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. 5, 1, 63–86.

Flanagan, C. and Freund, S. N. 2000. Type-based race detection for Java. In SIGPLAN
Conference on Programming Language Design and Implementation. 219–232.

Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., Saxe, J., and Stata, R. 2002. Ex-
tended static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation. ACM Press.

Foster, J., Terauchi, T., and Aiken, A. 2002. Flow-sensitive type qualifiers. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation.

Godefroid, P. 1997. Model Checking for Programming Languages using VeriSoft. In Proceedings
of the 24th ACM Symposium on Principles of Programming Languages.

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: Directed automated random testing. In
Proceedings of the Conference on Programming Language Design and Implementation (PLDI).
ACM Press, Chicago, IL USA.

Gotlieb, A., Botella, B., and Rueher, M. 1998. Automatic test data generation using con-
straint solving techniques. In ISSTA ’98: Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analysis. ACM Press, 53–62.

Gupta, N., Mathur, A. P., and Soffa, M. L. 1998. Automated test data generation using an
iterative relaxation method. In SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM Press, 231–244.

Hastings, R. and Joyce, B. 1992. Purify: Fast detection of memory leaks and access errors. In
Proceedings of the Winter USENIX Conference.

Holzmann, G. J. 1997. The model checker SPIN. Software Engineering 23, 5, 279–295.

Holzmann, G. J. 2001. From code to models. In Proc. 2nd Int. Conf. on Applications of
Concurrency to System Design. Proc. 2nd Int. Conf. on Applications of Concurrency to System
Design, 3–10.

Khurshid, S., Pasareanu, C. S., and Visser, W. 2003. Generalized symbolic execution for
model checking and testing. In Proceedings of the Ninth International Conference on Tools
and Algorithms for the Construction and Analysis of Systems.

Larson, E. and Austin, T. 2003. High coverage detection of input-related security faults. In
Proceedings of the 12th USENIX Security Symposium.

ACM Journal Name, Vol. V, No. N, February 2008.

36 · Cristian Cadar et al.

Miller, B. P., Fredriksen, L., and So, B. 1990. An empirical study of the reliability of UNIX

utilities. Communications of the Association for Computing Machinery 33, 12, 32–44.

Necula, G. C., McPeak, S., Rahul, S., and Weimer, W. 2002. CIL: Intermediate language and
tools for analysis and transformation of C programs. In International Conference on Compiler
Construction.

Nelson, G. and Oppen, D. 1979. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1, 2, 245–57.

Nethercote, N. and Seward, J. 2003. Valgrind: A program supervision framework. Electronic
Notes in Theoretical Computer Science 89, 2.

PCRE. PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/.

PCRE - CERT 2005. PCRE Regular Expression Heap Overflow. US-CERT Cyber Security Bul-
letin SB05-334. http://www.us-cert.gov/cas/bulletins/SB05-334.html#pcre.

Ruwase, O. and Lam, M. S. 2004. A practical dynamic buffer overflow detector. In Proceedings
of the 11th Annual Network and Distributed System Security Symposium. 159–169.

Sen, K., Marinov, D., and Agha, G. 2005. CUTE: A concolic unit testing engine for C. In
In 5th joint meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’05).

SMTLIB 2006. SMTLIB competition. http://www.csl.sri.com/users/demoura/smt-comp.

Wagner, D., Foster, J., Brewer, E., and Aiken, A. 2000. A first step towards automated
detection of buffer overrun vulnerabilities. In The 2000 Network and Distributed Systems
Security Conference. San Diego, CA.

Xie, Y. and Aiken, A. Scalable error detection using boolean satisfiability. In Proceedings of
the 32nd Annual Symposium on Principles of Programming Languages (POPL 2005), January
2005.

Xie, Y. and Aiken, A. 2005. Saturn: A SAT-based tool for bug detection. In CAV, K. Etessami
and S. K. Rajamani, Eds. Lecture Notes in Computer Science, vol. 3576. Springer, 139–143.

Yang, J., Sar, C., Twohey, P., Cadar, C., and Engler, D. 2006. Automatically generating
malicious disks using symbolic execution. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy.

Yang, J., Twohey, P., Engler, D., and Musuvathi, M. 2004. Using model checking to find
serious file system errors. In Symposium on Operating Systems Design and Implementation.

...

ACM Journal Name, Vol. V, No. N, February 2008.

