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1 What is toulbar2

TOULBARZ is an exact black box discrete optimization solver targeted at solving
cost function networks (CFN), thus solving the so-called “weighted Constraint
Satisfaction Problem” or WCSP. Cost function networks can be simply described
by a set of discrete variables each having a specific finite domain and a set of
integer cost functions, each involving some of the variables. The WCSP is to find
an assignment of all variables such that the sum of all cost functions is minimum
and lest than a given upper bound often denoted as k or T. Functions can be
typically specified by sparse or full tables but also more concisely as specific
functions called “global cost functions” [3].

Using on the fly translation, TOULBAR2 can also directly solve optimization
problems on other graphical models such as Maximum probability Explana-
tion (MPE) on Bayesian networks [16], and Maximum A Posteriori (MAP) on
Markov random field [I6]. It can also read partial weighted MaxSAT prob-
lems, Quadratic Pseudo Boolean problems (MAXCUT) as well as Linkage .pre
pedigree files for genotyping error detection and correction.

TOULBARZ2 is exact. It will only report an optimal solution when it has
both identified the solution and proved its optimality. Because it relies only on
integer operations, addition and subtraction, it does not suffer from rounding
errors. In the general case, the WCSP, MPE/BN, MAP/MRF, PWMaxSAT,
QPBO or MAXCUT being all NP-hard problems and thus TOULBAR2 may take
exponential time to prove optimality. This is however a worst-case behavior and
TOULBAR2 has been shown to be able to solve to optimality problems with half
a million non Boolean variables defining a search space as large as 2829440 [t
may also fail to solve in reasonable time problems with a search space smaller
than 2264,

TOULBAR2 provides and uses by default an “anytime” algorithm [2] that
tries to quickly provide good solutions together with an upper bound on the
gap between the cost of each solution and the (unknown) optimal cost. Thus,
even if it is unable to prove optimality, it will bound the quality of the solution
provided. It can also apply a variable neighborhood search algorithm exploiting
a problem decomposition [25]. This algorithm is complete (if enough CPU-time
is given) and it can be run in parallel using OpenMPI.



Beyond the service of providing optimal solutions, TOULBAR2 can also ex-
haustively enumerate solutions below a cost threshold and perform guaranteed
approximate weighted counting of solutions. For stochastic graphical models,
this means that TOULBAR2 will compute the partition function (or the normal-
izing constant Z). These problems being #P-complete, TOULBAR2 runtimes
can quickly increase on such problems.

2 How do I install it ?

TOULBARZ is an open source solver distributed under the MIT license as a set of
C++ sources managed with git at http://github. com/toulbar2/toulbar2, If
you want to use a released version, then you can download there source archives
of a specific release that should be easy to compile on most Linux systems.

If you want to compile the latest sources yourself, you will need a mod-
ern C++ compiler, CMake, Gnu MP Bignum library, a recent version of boost
libraries and optionally the jemalloc memory management and OpenMPT li-
braries. You can then clone TOULBAR2 on your machine and compile it by
executing:

git clone https://github.com/toulbar2/toulbar2.git
cd toulbar2

mkdir build

cd build

# ccmake ..

cmake ..

make

Finally, TOULBARZ2 is available in the debian-science section of the unsta-
ble/sid Debian version. It should therefore be directly installable using:

sudo apt-get install toulbar2

If you want to try TOULBAR2 on crafted, random, or real problems, please
look for benchmarks in the (Cost Function benchmark Section. Other bench-
marks coming from various discrete optimization languages are available at

Genotoul EvalGM] [15].
3 Using it as a black box

Using TOULBAR2 is just a matter of having a properly formatted input file
describing the cost function network, graphical model, PWMaxSAT, PBO or
Linkage .pre file and executing:

toulbar2 [option parameters] <file>


http://github.com/toulbar2/toulbar2
http://costfunction.org/en/benchmark
http://genoweb.toulouse.inra.fr/~degivry/evalgm

and TOULBARZ2 will start solving the optimization problem described in its
file argument. By default, the extension of the file (either .cfn, .cfn.gz, .wcsp,
.wenf, .cnf, .gpbo, .uai, .LG, .pre or .bep) is used to determine the nature
of the file (see section @ There is no specific order for the options or problem
file. TOULBAR2 comes with decently optimized default option parameters. It is
however often possible to set it up for different target than pure optimization
or tune it for faster action using specific command line options.

4 Quick start

1. Download a binary weighted constraint satisfaction problem (WCSP) file
example.wesp from the toulbar2’s Documentation Web page. Solve it with
default options:

toulbar2 EXAMPLES/example.wcsp

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.
Cost function decomposition time : 7e-06 seconds

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.090917%)

Preprocessing time: 0.000934 seconds

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)
Initial lower and upper bounds: [22,64[ 65.625%

New solution: 29 (0 backtracks, 8 nodes, depth 9)

Optimality gap: [ 23 , 29 ] 20.6897 % (8 backtracks, 16 nodes)

New solution: 27 (8 backtracks, 24 nodes, depth 8)

Optimality gap: [ 24 , 27 ] 11.1111 % (14 backtracks, 30 nodes

Optimality gap: [ 25 , 27 ] 7.40741 % (44 backtracks, 113 nodes)

Optimality gap: [ 26 , 27 ] 3.7037 % (54 backtracks, 151 nodes)

Optimality gap: [ 27 , 27 ] 0 % (54 backtracks, 157 nodes

Node redundancy during HBFS: 30.5732 7

Optimum: 27 in 54 backtracks and 157 nodes ( 205 removals by DEE) and 0.004154 seconds
end.

2. Solve a WCSP using INCOP, a local search method [24] applied just after
preprocessing, in order to find a good upper bound before a complete
search:

toulbar2 EXAMPLES/example.wcsp -i

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.
Cost function decomposition time : 7e-06 seconds

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.090917%)

Preprocessing time: 0.000898 seconds

New solution: 27 (0 backtracks, O nodes, depth 1)

INCOP solving time: 0.200984 seconds

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)
Initial lower and upper bounds: [22,27[ 18.5185%

Optimality gap: [ 23 , 27 ] 14.8148 % (34 backtracks, 87 nodes)

Optimality gap: [ 24 , 27 ] 11.1111 % (49 backtracks, 122 nodes

Optimality gap: [ 25 , 27 ] 7.40741 % (77 backtracks, 198 nodes)

Optimality gap: [ 27 , 27 1 0 % (84 backtracks, 226 nodes

Node redundancy during HBFS: 25.6637 7,

Optimum: 27 in 84 backtracks and 226 nodes ( 226 removals by DEE) and 0.206461 seconds
end.

3. Solve a WCSP with an initial upper bound and save its (first) optimal
solution in filename ”example.sol”:

toulbar2 EXAMPLES/example.wcsp —ub=28 -w=example.sol



Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.
Cost function decomposition time : 7e-06 seconds.

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.090917%)

Preprocessing time: 0.000922 seconds.

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)
Initial lower and upper bounds: [22,28[ 21.4286Y%

Optimality gap: [ 23 , 28 ] 17.8571 % (7 backtracks, 14 nodes

New solution: 27 (7 backtracks, 20 nodes, depth 6)

Optimality gap: [ 23 , 27 ] 14.8148 % (12 backtracks, 25 nodes

Optimality gap: [ 24 , 27 ] 11.1111 % (26 backtracks, 67 nodes)

Optimality gap: [ 25 , 27 ] 7.40741 % (58 backtracks, 163 nodes)

Optimality gap: [ 27 , 27 1 0 % (70 backtracks, 217 nodes

Node redundancy during HBFS: 35.4839 %

Optimum: 27 in 70 backtracks and 217 nodes ( 158 removals by DEE) and 0.005575 seconds.
end.

cat example.sol
# each value corresponds to one variable assignment in problem file order

1012340420310230132421044

4. Download a larger WCSP file scen06.wcsp from the toulbar2’s Documen-
tation Web page. Solve it using a limited discrepancy search strategy [14]
in order to speed-up the search for finding good upper bounds ﬁrstB

toulbar2 EXAMPLES/scen06.wcsp -1

Read 100 variables, with 44 values at most, and 1222 cost functions, with maximum arity 2.
Cost function decomposition time : 4.7e-05 seconds.

Preprocessing time: 0.156179 seconds.

82 unassigned variables, 3273 values in all current domains (med. size:44, max size:44) and 327 non-unary cost functions (med. degree:6)
Initial lower and upper bounds: [0,248338[ 100%

--- [0] LDS 0 --- (O nodes)

c 2097152 Bytes allocated for long long stack.

c 4194304 Bytes allocated for long long stack.

c 8388608 Bytes allocated for long long stack.

New solution: 8451 (0 backtracks, 110 nodes, depth 1)

--- [0] LDS 1 --- (110 nodes)

New solution: 6134 (2 backtracks, 386 nodes, depth 2)

New solution: 5795 (4 backtracks, 527 nodes, depth 2)

5711 (5 backtracks, 590 nodes, depth 2)

: 5444 (6 backtracks, 676 nodes, depth 2)

4828 (7 backtracks, 747 nodes, depth 2)

4507 (9 backtracks, 853 nodes, depth 2)

4408 (10 backtracks, 910 nodes, depth 2)

4145 (15 backtracks, 1047 nodes, depth 2)

New solution: 3730 (18 backtracks, 1112 nodes, depth 2)

--- [0] LDS 2 --- (1132 nodes)

New solution: 3635 (64 backtracks, 1606 nodes, depth 3)

New solution: 3585 (150 backtracks, 2169 nodes, depth 3)

New solution: 3493 (168 backtracks, 2283 nodes, depth 3)

New solution: 3472 (171 backtracks, 2312 nodes, depth 3)

--- (2420 nodes)

: 3463 (988 backtracks, 5683 nodes, depth 5)

: 3441 (990 backtracks, 5711 nodes, depth 5)

New solution: 3401 (1101 backtracks, 6178 nodes, depth 5)

--- [0] Search with no discrepancy limit --- (8111 nodes)

Optimality gap: [ 349 , 3401 ] 89.7383 7 (44869 backtracks, 94455 nodes)
New solution: 3400 (56746 backtracks, 118233 nodes, depth 24)

New solutio: 3399 (56747 backtracks, 118235 nodes, depth 23)

New solution: 3389 (56749 backtracks, 118248 nodes, depth 29)

Optimality gap: [ 1023 , 3389 ] 69.8141 % (90007 backtracks, 184743 nodes)
Optimality gap: [ 1306 , 3389 ] 61.4636 7% (91295 backtracks, 187319 nodes)
Optimality gap: [ 1818 , 3389 ] 46.3559 7 (93973 backtracks, 192675 nodes)
Optimality gap: [ 2261 , 3389 ] 33.2842 7 (94054 backtracks, 192837 nodes)
Optimality gap: [ 2777 , 3389 ] 18.0584 % (94060 backtracks, 192849 nodes)
Optimum: 3389 in 94062 backtracks and 192853 nodes ( 375927 removals by DEE) and 52.2443 seconds.
end.

5. Download a cluster decomposition file scen06.dec (each line corresponds
to a cluster of variables, clusters may overlap). Solve the previous WCSP
using a variable neighborhood search algorithm (UDGVNS) [25] during 5
seconds:

1By default, toulbar2 uses another diversification strategy based on hybrid best-first
search [2].



toulbar2 EXAMPLES/scen06.wcsp EXAMPLES/scen06.dec -vns -time=5

Read 100 variables, with 44 values at most, and 1222 cost functions, with maximum arity 2.
Cost function decomposition time : 4.8e-05 seconds.
Preprocessing time: 0.15041 seconds.

82 unassigned variables, 3273 values in all current domains (med. size:44, max size:44) and 327 non-unary cost functions (med. degree:6)
Initial lower and upper bounds: [0,248338[ 100%

c 2097152 Bytes allocated for long long stack.

c 4194304 Bytes allocated for long long stack.

c 8388608 Bytes allocated for long long stack.

New solution: 8451 (0 backtracks, 110 nodes, depth 111)
Problem decomposition in 55 clusters with size distribution: min: 1 median: 5 mean: 4.78182 max: 12
#xkxxk Restart 1 with 1 discrepancies and UB=8451 *xxx*x (110 nodes)
New solution: 8440 (0 backtracks, 110 nodes, depth 1)
New solution: 7474 (0 backtracks, 112 nodes, depth 2)
New solution: 6481 (0 backtracks, 117 nodes, depth 2)
New solution: 6358 (0 backtracks, 117 nodes, depth 1)
(0 backtracks, 120 nodes, depth 2)

(0 backtracks, 120 nodes, depth 1)

(0 backtracks, 120 nodes, depth 1)

(0 backtracks, 120 nodes, depth 1)

(0 backtracks, 123 nodes, depth 2)

(0 backtracks, 123 nodes, depth 1)
(0 backtracks, 123 nodes, depth 1)
(2 backtracks, 141 nodes, depth 2)

(2 backtracks, 141 nodes, depth 1)

(2 backtracks, 141 nodes, depth 1)
New solution: 5094 (2 backtracks, 141 nodes, depth 1)
New solution: (5 backtracks, 205 nodes, depth 2)
New solution: 4630 (10 backtracks, 232 nodes, depth 2)
New solution: (10 backtracks, 234 nodes, depth 2)
New solution: 4557 (30 backtracks, 366 nodes, depth 2)
New solutio: (35 backtracks, 383 nodes, depth 1)
New solution: (37 backtracks, 395 nodes, depth 2)
New solutio: (48 backtracks, 549 nodes, depth 2)
(68 backtracks, 706 nodes, depth 2)
(68 backtracks, 706 nodes, depth 1)
(68 backtracks, 706 nodes, depth 1)
(70 backtracks, 713 nodes, depth 1)
(71 backtracks, 715 nodes, depth 1)
(72 backtracks, 724 nodes, depth 2)
(75 backtracks, 733 nodes, depth 1)
New solution: 3709 (97 backtracks, 898 nodes, depth 2)
New solution: backtracks, 2276 nodes, depth 2)
New solution: 3700 (240 backtracks, 2276 nodes, depth 1)
New solution: backtracks, 2540 nodes, depth 2)
New solution: 3588 (279 backtracks, 2543 nodes, depth 1)
backtracks, 2546 nodes, depth 2)
backtracks, 2549 nodes, depth 2)
backtracks, 2564 nodes, depth 2)
backtracks, 3243 nodes, depth 2)
backtracks, 3251 nodes, depth 2)
backtracks, 3256 nodes, depth 1)
(388 backtracks, 3256 nodes, depth 1)
3469 (391 backtracks, 3264 nodes, depth 1)
New solution: 3447 (409 backtracks, 3344 nodes, depth 2)
New solution: 3437 (414 backtracks, 3377 nodes, depth 2)
New solution: 3430 (439 backtracks, 3517 nodes, depth 2)
New solution: 3420 (439 backtracks, 3517 nodes, depth 1)
New solution: 3412 (468 backtracks, 3664 nodes, depth 2)
New solution: 3389 (517 backtracks, 4099 nodes, depth 2)
#%xxkk Restart 2 with 2 discrepancies and UB=3389 *xxxxx (5528 nodes)

Time limit expired... Aborting...

Download another difficult instance scen07.wcsp. Solve it using a vari-
able neighborhood search algorithm (UDGVNS) with maximum cardinal-
ity search cluster decomposition and absorption [25] during 5 seconds:

toulbar2 EXAMPLES/scen07.wcsp -vns -0=-1 -E -time=5

Read 200 variables, with 44 values at most, and 2665 cost functions, with maximum arity 2.

Cost function decomposition time : 0.00014 seconds.

Reverse DAC lower bound: 10001 (+0.009999%)

Preprocessing time: 0.358369 seconds.

162 unassigned variables, 6481 values in all current domains (med. size:44, max size:44) and 764 non-unary cost functions (med. degree:8)
Initial lower and upper bounds: [10001,436523359[ 99.9977%

c 2097152 Bytes allocated for long long stack.

¢ 4194304 Bytes allocated for long long stack.

c 8388608 Bytes allocated for long long stack.

New solution: 1504818 (0 backtracks, 232 nodes, depth 233)

Tree decomposition time: 0.002884 seconds.

Problem decomposition in 25 clusters with size distribution: min: 3 median: 10 mean: 10.36 max: 38



#xkxxk Restart 1 with 1 discrepancies and UB=1504818 *¥xx*x (232 nodes)
New solution: 1485420 (0 backtracks, 232 nodes, depth
New solution: 1485419 (0 backtracks, 232 nodes, depth 1)
New solution: 1485417 (0 backtracks, 232 nodes, depth 1)
New solution: (0 backtracks, 232 nodes, depth 1)
New solution: 1445515 (0 backtracks, 232 nodes, depth 1)
New solution: (0 backtracks, 232 nodes, depth 1)
New solution: 1425615 (0 backtracks, 233 nodes, depth 2)
(0 backtracks, 233 nodes, depth 1)
(0 backtracks, 233 nodes, depth 1)
(0 backtracks, 233 nodes, depth 1)
(0 backtracks, 233 nodes, depth 1)
(0 backtracks, 233 nodes, depth 1)
(0 backtracks, 235 nodes, depth 2)
(0 backtracks, 235 nodes, depth 1)
(0 backtracks, 235 nodes, depth 1)
(1 backtracks, 241 nodes, depth 2)
(2 backtracks, 247 nodes, depth 2)
New solution: 384907 (2 backtracks, 247 nodes, depth 1)
New solution: (3 backtracks, 254 nodes, depth 2)
New solution: 374405 (3 backtracks, 256 nodes, depth 2)
New solution: (4 backtracks, 259 nodes, depth 1)
New solution: 374303 (6 backtracks, 266 nodes, depth 1)

i (14 backtracks, 309 nodes, depth 2)
(16 backtracks, 318 nodes, depth 1)
(18 backtracks, 325 nodes, depth 1)
(26 backtracks, 370 nodes, depth 2)
(26 backtracks, 370 nodes, depth 1)
(41 backtracks, 431 nodes, depth 2)
(68 backtracks, 564 nodes, depth 1)
(85 backtracks, 675 nodes, depth 1)
New solution: 343800 (106 backtracks, 801 nodes, depth 2)
New solution: 343796 (106 backtracks, 801 nodes, depth 1)
New solution: 343595 (110 backtracks, 813 nodes, depth 1)
New solution: 343593 (126 backtracks, 867 nodes, depth 1)
New solution: 343592 (151 backtracks, 971 nodes, depth 2)
#*xxkk Restart 2 with 2 discrepancies and UB=343592 xxxxx* (2649 nodes)

-

N

N

N

Time limit expired... Aborting...

Download file 404.wcsp. Solve it using Depth-First Brand and Bound
with Tree Decomposition and HBFS (BTD-HBFS) [10] based on a min-
fill variable ordering;:

toulbar2 EXAMPLES/404.wcsp -0=-3 -B=1

Read 100 variables, with 4 values at most, and 710 cost functions, with maximum arity 3.

Cost function decomposition time : 5.3e-05 seconds.

Reverse DAC lower bound: 64 (+26.5625%)

Reverse DAC lower bound: 67 (+4.47761%)

Preprocessing time: 0.006246 seconds.

88 unassigned variables, 226 values in all current domains (med. size:2, max size:4) and 591 non-unary cost functions (med. degree:13)
Initial lower and upper bounds: [67,153[ 56.2092%

Tree decomposition width : 19
Tree decomposition height : 43
Number of clusters 1 47

Tree decomposition time: 0.002262 seconds.

New solution: 123 (24 backtracks, 44 nodes, depth 2)

Optimality gap: [ 68 , 123 ] 44.7154 % (24 backtracks, 44 nodes)
New solution: 122 (38 backtracks, 73 nodes, depth 2)

Optimality gap: [ 75 , 122 ] 38.5246 % (38 backtracks, 73 nodes)
New solution: 117 (170 backtracks, 341 nodes, depth 2)

Optimality gap: [ 89 , 117 ] 23.9316 % (170 backtracks, 341 nodes)
Optimality gap: [ 91 , 117 ] 22.2222 % (236 backtracks, 518 nodes)
Optimality gap: [ 93 , 117 ] 20.5128 % (302 backtracks, 703 nodes)
New solution: 116 (324 backtracks, 800 nodes, depth 2)

Optimality gap: [ 97 , 116 ] 16.3793 % (324 backtracks, 800 nodes)
New solution: 115 (386 backtracks, 973 nodes, depth 2)

Optimality gap: [ 99 , 115 ] 13.913 % (386 backtracks, 973 nodes)
New solution: 114 (408 backtracks, 1027 nodes, depth 2)

Optimality gap: [ 99 , 114 ] 13.1579 % (408 backtracks, 1027 nodes)
Optimality gap: [ 100 , 114 1 12.2807 % (436 backtracks, 1117 nodes)
Optimality gap: [ 101 , 114 11.4035 7 (437 backtracks, 1137 nodes)
Optimality gap: [ 102 , 114 10.5263 7 (444 backtracks, 1205 nodes)
Optimality gap: [ 103 , 114 ] 9.64912 % (463 backtracks, 1256 nodes)
Optimality gap: [ 104 , 114 ] 8.77193 % (464 backtracks, 1262 nodes)
Optimality gap: [ 105 , 114 ] 7.89474 % (510 backtracks, 1384 nodes)
Optimality gap: [ 106 , 114 7.01754 % (510 backtracks, 1449 nodes)
Optimality gap: [ 107 , 114 ] 6.14035 % (513 backtracks, 1476 nodes)
Optimality gap: [ 108 , 114 5.26316 % (523 backtracks, 1510 nodes)
Optimality gap: [ 109 , 114 ] 4.38596 % (523 backtracks, 1516 nodes)
Optimality gap: [ 110 , 114 ] 3.50877 % (523 backtracks, 1532 nodes.
Optimality gap: [ 112 , 114 1.75439 7 (534 backtracks, 1568 nodes)
Optimality gap: [ 113 , 114 0.877193 7 (535 backtracks, 1603 nodes)



Optimality gap: [ 114 , 114 ] 0 % (535 backtracks, 1620 nodes)

HBFS open list restarts: O % and reuse: 12.7371 % of 369

Node redundancy during HBFS: 35.679 %

Optimum: 114 in 535 backtracks and 1620 nodes ( 46 removals by DEE) and 0.028496 seconds
end.

Solve the same problem using Russian Doll Search exploiting BTD [26]:
toulbar2 EXAMPLES/404.wcsp -0=-3 -B=2

Read 100 variables, with 4 values at most, and 710 cost functions, with maximum arity 3.

Cost function decomposition time : 4.2e-05 seconds

Reverse DAC lower bound: 64 (+26.5625%)

Reverse DAC lower bound: 67 (+4.47761%)

Preprocessing time: 0.006214 seconds

88 unassigned variables, 226 values in all current domains (med. size:2, max size:4) and 591 non-unary cost functions (med. degree:13)
Initial lower and upper bounds: [67,153[ 56.2092%

Tree decomposition width : 19
Tree decomposition height : 43
Number of clusters ;a7

Tree decomposition time: 0.002272 seconds

--- Solving cluster subtree 5 ...

New solution: O (0 backtracks, O nodes, depth 1)

--- done cost = [0,0] (0 backtracks, O nodes, depth 1)

--- Solving cluster subtree 6 ...
New solution: 0 (0 backtracks, O nodes, depth 1)
-—- dome cost = [0,0] (0 backtracks, 0 nodes, depth 1)

--- Solving cluster subtree 7 ...

--- Solving cluster subtree 44 ...

New solution: 40 (326 backtracks, 563 nodes, depth 7)

New solution: 39 (334 backtracks, 574 nodes, depth 7)

New solution: 35 (344 backtracks, 605 nodes, depth 21)

--- done cost = [35,35] (434 backtracks, 748 nodes, depth 1)

--- Solving cluster subtree 46 ...
New solution: 114 (434 backtracks, 748 nodes, depth 1)
--- done cost = [114,114] (434 backtracks, 748 nodes, depth 1)

Optimum: 114 in 434 backtracks and 748 nodes ( 45 removals by DEE) and 0.02135 seconds
end.

Solve another WCSP using the original Russian Doll Search method [28]
with static variable ordering (following problem file) and soft arc consis-
tency:

toulbar2 EXAMPLES/505.wcsp -B=3 -j=1 -svo -k=1

Read 240 variables, with 4 values at most, and 2242 cost functions, with maximum arity 3.

Cost function decomposition time : 0.000659 seconds

Preprocessing time: 0.013853 seconds.

233 unassigned variables, 666 values in all current domains (med. size:2, max size:4) and 1966 non-unary cost functions (med. degree:16)
Initial lower and upper bounds: [2,34347[ 99.9942%

Tree decomposition width : 59
Tree decomposition height : 233
Number of clusters : 239

Tree decomposition time: 0.014871 seconds

--- Solving cluster subtree O ...

New solution: O (0 backtracks, O nodes, depth 1)

- done cost = [0,0] (0 backtracks, O nodes, depth 1)

--- Solving cluster subtree 1 ...
New solution: O (O backtracks, O nodes, depth 1)
--- done cost = [0,0] (0 backtracks, O nodes, depth 1)

-—- Solving cluster subtree 2 ...

--- Solving cluster subtree 3 ...
New solution: 21253 (26963 backtracks, 48851 nodes, depth 2)
New solution: 21251 (26991 backtracks, 48883 nodes, depth 3)
- dome cost = [21251,21251] (26992 backtracks, 48883 nodes, depth 1)

Solving cluster subtree 238 ...
solution: 21253 (26992 backtracks, 48883 nodes, depth 1)




--- done cost = [21253,21253] (26992 backtracks, 48883 nodes, depth 1)

Optimum: 21253 in 26992 backtracks and 48883 nodes ( O removals by DEE) and 5.59561 seconds.
end.

10. Solve the same WCSP using a parallel variable neighborhood search algo-
rithm (UPDGVNS) with min-fill cluster decomposition [25] using 4 cores
during 5 seconds:

mpirun -n 4 toulbar2 EXAMPLES/505.wcsp -vns -0=-3 -time=5

Read 240 variables, with 4 values at most, and 2242 cost functions, with maximum arity 3.

Cost function decomposition time : 0.001757 seconds.

Reverse DAC lower bound: 11113 (+27.3553%)

Reverse DAC lower bound: 11120 (+0.0629496%)

Preprocessing time: 0.070685 seconds.

233 unassigned variables, 666 values in all current domains (med. size:2, max size:4) and 1970 non-unary cost functions (med. degree:16)
Initial lower and upper bounds: [11120,34354[ 67.6311%

Tree decomposition time: 0.01732 seconds.

Problem decomposition in 89 clusters with size distribution: min: 4 median: 11 mean: 11.8315 max: 23

New solution: 26264 (0 backtracks, 56 nodes, depth 57)

New solutio; 26263 in 0.0327849 seconds.
New solution: 26262 in 0.036654 seconds.
New solution: in 0.0400689 seconds.
New solution: 25263 in 0.0407119 seconds.
New solution: 0.050138 seconds.
New solution: 25261 in 0.061362 seconds.
0.0637269 seconds.
0.0679278 seconds.
0.068089 seconds.
0.077704 seconds.
0.0918329 seconds.
0.0964508 seconds.
0.102036 seconds.
0.105563 seconds.
0.118236 seconds.
0.152582 seconds.
New solution: 21258 in 0.154594 seconds.
New solution: 0.156728 seconds.
New solution: 21254 in 0.239868 seconds.
New solution: 21253 in 0.703341 seconds.

MPI_ABORT was invoked on rank 1 in communicator MPI_COMM_WORLD
with errorcode 0.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.
You may or may mot see output from other processes, depending on
exactly when Open MPI kills them.

Time limit expired... Aborting...

11. Download file example.dec. Solve a WCSP using a variable neighborhood
search algorithm (UDGVNS) with a given cluster decomposition:

toulbar2 EXAMPLES/example.wcsp EXAMPLES/example.dec -vns

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.

Cost function decomposition time : 6e-06 seconds.

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.09091%)

Preprocessing time: 0.00088 seconds.

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)
Initial lower and upper bounds: [22,64[ 65.625%

New solution: 29 (0 backtracks, 8 nodes, depth 9)

Problem decomposition in 7 clusters with size distribution: min: 11 median: 15 mean: 15.1429 max: 17
#%xxkk Restart 1 with 1 discrepancies and UB=29 *##xxx (8 nodes)

New solution: 28 (0 backtracks, 8 nodes, depth 1)

New solution: 27 (0 backtracks, 8 nodes, depth 1)

#xkxxk Restart 2 with 2 discrepancies and UB=27 ***xx* (61 nodes)

#xkxxk Restart 3 with 4 discrepancies and UB=27 x*xxx (133 nodes)

#xkxxk Restart 4 with 8 discrepancies and UB=27 xx**xx (280 nodes)

*akkkk Restart 5 with 16 discrepancies and UB=27 *kxx* (636 nodes)

Optimum: 27 in 343 backtracks and 770 nodes ( 950 removals by DEE) and 0.024371 seconds.

end.

12. Solve a WCSP using a parallel variable neighborhood search algorithm
(UPDGVNS) with the same cluster decomposition:



mpirun -n 4 toulbar2 EXAMPLES/example.wcsp EXAMPLES/example.dec -vns

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.

Cost function decomposition time : 1.3e-05 seconds.

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 22 (+9.09091%)

Preprocessing time: 0.001489 seconds.

24 unassigned variables, 117 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5)
Initial lower and upper bounds: [22,64[ 65.625%

Problem decomposition in 7 clusters with size distribution: min: 11 median: 15 mean: 15.1429 max: 17
New solution: 29 (0 backtracks, 7 nodes, depth 8)

New solution: 28 in 0.00155497 seconds.

New solution: 27 in 0.0021801 seconds.

Optimum: 27 in O backtracks and 7 nodes ( 35 removals by DEE) and 0.044263 seconds.

Total CPU time = 0.192932 seconds

Solving real-time = 0.046993 seconds (not including preprocessing time)

end.

Download file example.order. Solve a WCSP using BTD-HBFS based on
a given (min-fill) reverse variable elimination ordering:

toulbar2 EXAMPLES/example.wcsp EXAMPLES/example.order -B=1

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.

Cost function decomposition time : 8e-06 seconds

Reverse DAC lower bound: 19 (+10.5263%)

Preprocessing time: 0.000803 seconds.

24 unassigned variables, 115 values in all current domains (med. size:5, max size:5) and 62 non-unary cost functions (med. degree:5
Initial lower and upper bounds: [19,64[ 70.3125%

Tree decomposition width : 8
Tree decomposition height : 16
Number of clusters : 18

Tree decomposition time: 0.00026 seconds.

New solution: 29 (19 backtracks, 34 nodes, depth 2)

Optimality gap: [ 20 , 29 ] 31.0345 % (19 backtracks, 34 nodes)
Optimality gap: [ 22 , 29 ] 24.1379 % (43 backtracks, 92 nodes)
New solution: 28 (71 backtracks, 157 nodes, depth 2)

Optimality gap: [ 22 , 28 ] 21.4286 % (71 backtracks, 157 nodes)
New solution: 27 (94 backtracks, 204 nodes, depth 2)

Optimality gap: [ 22 , 27 ] 18.5185 % (94 backtracks, 204 nodes
Optimality gap: [ 23 , 27 ] 14.8148 % (115 backtracks, 249 nodes
Optimality gap: [ 24 , 27 ] 11.1111 % (159 backtracks, 363 nodes
Optimality gap: [ 25 , 27 ] 7.40741 % (176 backtracks, 414 nodes)
Optimality gap: [ 26 , 27 ] 3.7037 % (177 backtracks, 441 nodes)
Optimality gap: [ 27 , 27 1 0 % (181 backtracks, 537 nodes

HBFS open list restarts: O % and reuse: 11.4286 % of 70

Node redundancy during HBFS: 34.2644 7,

Optimum: 27 in 181 backtracks and 537 nodes ( 94 removals by DEE) and 0.009692 seconds.
end.

Download file example.cov. Solve a WCSP using BTD-HBFS based on a
given explicit (min-fill path-) tree-decomposition:

toulbar2 EXAMPLES/example.wcsp EXAMPLES/example.cov -B=1

Read 25 variables, with 5 values at most, and 63 cost functions, with maximum arity 2.
Warning! Cannot apply variable elimination during search with a given tree decomposition file
Warning! Cannot apply functional variable elimination with a given tree decomposition file
Cost function decomposition time : 7e-06 seconds

Reverse DAC lower bound: 20 (+10%)

Reverse DAC lower bound: 21 (+4.76197%)

Preprocessing time: 0.00093 seconds.

25 unassigned variables, 120 values in all current domains (med. size:5, max size:5) and 63 non-unary cost functions (med. degree:5)
Initial lower and upper bounds: [21,64[ 67.1875%

Tree decomposition width : 16

Tree decomposition height : 24

Number of clusters 9

Tree decomposition time: 0.000218 seconds.

New solution: 29 (23 backtracks, 29 nodes, depth 2)

Optimality gap: [ 22 , 29 ] 24.1379 % (33 backtracks, 52 nodes)

New solution: 28 (128 backtracks, 273 nodes, depth 2)

Optimality gap: [ 22 , 28 ] 21.4286 % (128 backtracks, 273 nodes)

New solution: 27 (161 backtracks, 340 nodes, depth 2)

Optimality gap: [ 23 , 27 ] 14.8148 % (161 backtracks, 340 nodes

Optimality gap: [ 24 , 27 ] 11.1111 % (217 backtracks, 469 nodes

Optimality gap: [ 25 , 27 ] 7.40741 % (261 backtracks, 590 nodes)

Optimality gap: [ 26 , 27 ] 3.7037 % (271 backtracks, 681 nodes)

Optimality gap: [ 27 , 27 ] 0 % (276 backtracks, 739 nodes)

HBFS open list restarts: O % and reuse: 26.9231 % of 26

Node redundancy during HBFS: 28.4168 %

Optimum: 27 in 276 backtracks and 739 nodes ( 95 removals by DEE) and 0.012753 seconds.
end.



15.

16.

17.

Download a Markov Random Field (MRF) file pedigree9.uas in UAI for-
mat from the toulbar2’s Documentation Web page. Solve it using bounded
(of degree at most 8) variable elimination enhanced by cost function de-
composition in preprocessing [13] followed by BTD-HBFS exploiting only
small-size (less than four variables) separators:

toulbar2 EXAMPLES/pedigree9.uai -0=-3 -p=-8 -B=1 -r=4

Read 1118 variables, with 7 values at most, and 1118 cost functions, with maximum arity 4.

No evidence file specified. Trying EXAMPLES/pedigree9.uai.evid

No evidence file.

Generic variable elimination of degree 4

Maximum degree of genmeric variable elimination: 4

Cost function decomposition time : 0.003853 seconds

Preprocessing time: 0.06838 seconds.

232 unassigned variables, 517 values in all current domains (med. size:2, max size:7) and 417 non-unary cost functions (med. degree:6)
Initial lower and upper bounds: [553902779,13246577453[ 95.8185%

Tree decomposition width : 227

Tree decomposition height : 230

Number of clusters : 890

Tree decomposition time: 0.044444 seconds.
New solution: 864780591 energy: 298.356 prob:
New solution: 842808347 energy: 296.159 prob:
New solution: 833705902 energy: 295.249 prob:
823002032 energy: 294.178 prob:
: 781808575 energy: 290.059 prob:

.66419e-130 (73 backtracks, 142 nodes, depth 2)
39777e-129 (297 backtracks, 620 nodes, depth 2)
95829e-129 (728 backtracks, 1583 nodes, depth 2)
73774e-128 (895 backtracks, 2001 nodes, depth 2)
06904e-126 (943 backtracks, 2103 nodes, depth 2)
753290137 energy: 287.207 prob: 85154e-125 (1076 backtracks, 2380 nodes, depth 2)
711184893 energy: 282.997 prob: 1.24779e-123 (2112 backtracks, 4459 nodes, depth 2)
HBFS open list restarts: O % and reuse: 44.7548 % of 1611

Node redundancy during HBFS: 18.4077 7

Optimum: 711184893 energy: 282.997 prob: 1.24779e-123 in 29934 backtracks and 73355 nodes ( 24686 removals by DEE) and 5.28419 seconds.
end.

Boe e R 0N

Download another MRF file Geom.Surf-7-gm256.uai. Solve it using Virtual
Arc Consistency (VAC) in preprocessing [6] and exploit a VAC-based value
ordering heuristic [7]:

toulbar2 EXAMPLES/GeomSurf-7-gm256.uai -A -V

Read 787 variables, with 7 values at most, and 3527 cost functions, with maximum arity 3.

No evidence file specified. Trying EXAMPLES/GeomSurf-7-gm256.uai.evid

No evidence file.

Lb before VAC: 4506326046

Cost function decomposition time : 0.000862 seconds.

Reverse DAC lower bound: 5853428901 (+0.0694528%)

Preprocessing VAC mean 1b/incr: 2.8643e+06 total increments: 463 cyclesize: 22.2419 k: 1.29806 (mean), 4 (max)
Lb after VAC: 5905811708

Preprocessing time: 2.18214 seconds.

730 unassigned variables, 4828 values in all current domains (med. size:7, max size:7) and 3131 non-unary cost functions (med. degree:6)
Initial lower and upper bounds: [5905811708,111615200815[ 94.7088%

c 2097152 Bytes allocated for long long stack.

c 4194304 Bytes allocated for long long stack.

New solution: 6135086360 energy: 1099.69 prob: 2.57374e-478 (0 backtracks, 116 nodes, depth 117)

Optimality gap: [ 5908760056 , 6135086360 ] 3.68905 % (104 backtracks, 220 nodes)

New solution: 5922481881 energy: 1078.43 prob: 4.40413e-469 (104 backtracks, 331 nodes, depth 109)

Optimality gap: [ 5909173184 , 5922481881 ] 0.224715 % (191 backtracks, 418 nodes)

Optimality gap: [ 5922481881 , 5922481881 ] 0 % (191 backtracks, 420 nodes)

VAC mean 1b/incr: -nan total increments: O cyclesize: -nan k: -nan (mean), O (max)

Node redundancy during HBFS: 1.19048 7,

Optimum: 5922481881 energy: 1078.43 prob: 4.40413e-469 in 191 backtracks and 420 nodes ( 18060 removals by DEE) and 2.55928 seconds.
end.

Download another MRF file 1CM1.uai. Solve it by applying first a strong
dominance pruning test in preprocessing, and secondly, a modified variable
ordering heuristic during search [4]:

toulbar2 EXAMPLES/1CM1.uai -dee=2 -m=2

Read 37 variables, with 350 values at most, and 703 cost functions, with maximum arity 2.
No evidence file specified. Trying EXAMPLES/1CM1.uai.evid
No evidence file.
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Cost function decomposition time : 0.000225 seconds.

Reverse DAC lower bound: 102868791154 (+0.010277%)

Preprocessing time: 10.9057 seconds.

37 unassigned variables, 1679 values in all current domains (med. size:33, max size:350) and 624 non-unary cost functions (med. degree:35)
Initial lower and upper bounds: [102868791154,239074057808[ 56.972%

2097152 Bytes allocated for long long stack.

4194304 Bytes allocated for long long stack.

8388608 Bytes allocated for long long stack.

16777216 Bytes allocated for long long stack.

33554432 Bytes allocated for long long stack.

67108864 Bytes allocated for long long stack.

New solution: 104206588216 energy: -12464.3 prob: inf (0 backtracks, 48 nodes, depth 49)

Optimality gap: [ 103905905484 , 104206588216 ] 0.288545 % (22 backtracks, 70 nodes)

New solution: 104174014744 energy: -12467.6 prob: inf (22 backtracks, 82 nodes, depth 3)

Optimality gap: [ 103963607615 , 104174014744 ] 0.201977 7% (23 backtracks, 83 nodes)

Optimality gap: [ 104010471712 , 104174014744 ] 0.15699 7% (24 backtracks, 93 nodes)

Optimality gap: [ 104174014744 , 104174014744 ] 0 % (25 backtracks, 96 nodes)

Node redundancy during HBFS: 19.7917 7,

Optimum: 104174014744 energy: -12467.6 prob: inf in 25 backtracks and 96 nodes ( 3803 removals by DEE) and 11.4979 seconds
end.

oo0o0o0o0 o0

18. Download a weighted Max-SAT file brock200_4.clq.wenf in wenf format
from the toulbar2’s Documentation Web page. Solve it using a modified
variable ordering heuristic [4]:

toulbar2 EXAMPLES/brock200_4.clq.wenf -m=1

c Read 200 variables, with 2 values at most, and 7011 clauses, with maximum arity 2.

Cost function decomposition time : 0.000277 seconds

Reverse DAC lower bound: 91 (+86.8132%)

Reverse DAC lower bound: 92 (+1.08696%)

Preprocessing time: 0.034145 seconds.

200 unassigned variables, 400 values in all current domains (med. size:2, max size:2) and 6811 non-unary cost functions (med. degree:68)
Initial lower and upper bounds: [92,200[ 54%

New solution: 189 (0 backtracks, 9 nodes, depth 10)

New solution: 188 (20 backtracks, 55 nodes, depth 10)

New solution: (113 backtracks, 326 nodes, depth 20)

New solution: 186 (428 backtracks, 1013 nodes, depth 21)

New solution: (8011 backtracks, 17396 nodes, depth 14)

New solution: 184 (13807 backtracks, 29658 nodes, depth 11)

New solution: 183 (13821 backtracks, 29682 nodes, depth 7)

Node redundancy during HBFS: 26.313 %

Optimum: 183 in 299378 backtracks and 812567 nodes ( 3362 removals by DEE) and 21.3244 seconds.
end.

19. Download another WCSP file latin4.wcsp. Count the number of feasible
solutions:

toulbar2 EXAMPLES/latind.wcsp -a

Read 16 variables, with 4 values at most, and 24 cost functions, with maximum arity 4.
Cost function decomposition time : O seconds.
Reverse DAC lower bound: 48 (+2.08333%)
Preprocessing time: 0.006302 seconds.
16 unassigned variables, 64 values in all current domains (med. size:4, max size:4) and 8 non-unary cost functions (med. degree:6)
Initial lower and upper bounds: [48,1000[ 95.2%
Optimality gap: [ 49 , 1000 ] 95.1 % (12 backtracks, 26 nodes)
Optimality gap: [ 58 , 1000 ] 94.2 % (353 backtracks, 813 nodes)
Optimality gap: [ 72 , 1000 ] 92.8 % (575 backtracks, 1360 nodes)
Optimality gap: [ 1000 , 1000 ] 0 % (575 backtracks, 1369 nodes)
Number of solutions = 576
Time H 0.300726 seconds
. in 575 backtracks and 1369 nodes
end.

20. Download a crisp CSP file GEOM40-6.wesp (initial upper bound equal
to 1). Count the number of solutions using #BTD [12] using a min-fill
variable orderingﬂ

toulbar2 EXAMPLES/GEOM40_6.wcsp -0=-3 -a -B=1

2Warning, cannot use BTD to find all solutions in optimization.
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Read 40 variables, with 6 values at most, and 78 cost functions, with maximum arity 2.

Cost function decomposition time : 4e-06 seconds

Preprocessing time: 0.000908 seconds.

40 unassigned variables, 240 values in all current domains (med. size:6, max size:6) and 78 non-unary cost functions (med. degree:4)
Initial lower and upper bounds: [0,1[ 100%

Tree decomposition width : 5
Tree decomposition height : 20
Number of clusters ;29

0.000336 seconds.
= 4.11111e+23

Tree decomposition time
Number of solutions

Number of #goods 3993

Number of used #goods : 17190

Size of sep : 4

Time : 0.051852 seconds

. in 13689 backtracks and 27378 nodes
end.

21. Get a quick approximation of the number of solutions of a CSP with
Approx#BTD [12]:

toulbar2 EXAMPLES/GEOM40_6.wcsp -0=-3 -a -B=1 -D

Read 40 variables, with 6 values at most, and 78 cost functions, with maximum arity 2.

Cost function decomposition time : 5e-06 seconds

Preprocessing time: 0.000888 seconds.

40 unassigned variables, 240 values in all current domains (med. size:6, max size:6) and 78 non-unary cost functions (med. degree:4)
Initial lower and upper bounds: [0,1[ 100%

part 1 : 40 variables and 71 constraints (really added)
part 2 : 10 variables and 7 constraints (really added)
--> number of parts : 2

--> time : 0.000341 seconds.

Tree decomposition width : &
Tree decomposition height : 17
Number of clusters ¢ 33

Tree decomposition time: 0.000629 seconds

Cartesian product : 1.33675e+31
Upper bound of number of solutions : <= 1.71993e+24

Number of solutions  : “= 4.8e+23
Number of #goods 468

Number of used #goods : 4788

Size of sep ;03

Time : 0.011165 seconds

. in 3738 backtracks and 7476 nodes
end.

5 Command line options
If you just execute:
toulbar?2

TOULBAR2 will give you its (long) list of optional parameter which we now
describe in more detail.

To deactivate a default command line option, just use the command-line
option followed by “:”. For example:

toulbar2 -dee: <file>

will disable the default Dead End Elimination [9] (aka Soft Neighborhood
Substitutability) preprocessing.
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5.1 General control

-a=[integer| finds at most a given number of solutions with a cost strictly
lower than the initial upper bound and stops, or if no integer is given,
finds all solutions (or counts the number of zero-cost satisfiable solutions
in conjunction with BTD)

-D approximate satisfiable solution count with BTD

-logz computes log of probability of evidence (i.e. log partition function or
log(Z) or PR task) for graphical models only (problem file extension .uai)

-timer=[integer| give a CPU time limit in seconds. TOULBAR2 will stop after
the specified CPU time has been consumed. The time limit is a CPU user
time limit, not wall clock time limit.

-seed=[integer] random seed non-negative value or use current time if a neg-
ative value is given (default value is 1)

5.2 Preprocessing

-nopre deactivates all preprocessing options (equivalent to -e: -p: -t: -f: -dec:
-n: -mst: -dee:)

-p=|integer| preprocessing only: general variable elimination of degree less
than or equal to the given value (default value is -1)

-t=[integer| preprocessing only: simulates restricted path consistency by adding
ternary cost functions on triangles of binary cost functions within a given
maximum space limit (in MB)

-f=[integer]| preprocessing only: variable elimination of functional (f=1) (resp.
bijective (f=2)) variables (default value is 1)

-dec preprocessing only: pairwise decomposition [I3] of cost functions with
arity >= 3 into smaller arity cost functions (default option)

-n=[integer]| preprocessing only: projects n-ary cost functions on all binary
cost functions if n is lower than the given value (default value is 10).
See [13].

-mst find a maximum spanning tree ordering for DAC

-M=[integer] apply the Min Sum Diffusion algorithm (default is inactivated,
with a number of iterations of 0). See [1].
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5.3 Initial upper bounding

-1=[integer]| limited discrepancy search [I4], use a negative value to stop the
search after the given absolute number of discrepancies has been explored
(discrepancy bound = 4 by default)

-L=[integer| randomized (quasi-random variable ordering) search with restart
(maximum number of nodes/VNS restarts = 10000 by default)

-i=["string”] initial upper bound found by INCOP local search solver [24].
The string parameter is optional, using “0 1 3 idwa 100000 cv v 0 200
1 0 0” by default with the following meaning: stoppinglowerbound ran-
domseed nbiterations method nbmoves neighborhoodchoice neighborhood-
choice2 minnbneighbors maxnbneighbors neighborhoodchoice3 autotuning
tracemode.

-x=[(,i=a)*] assigns variable of index i to value a (multiple assignments are
separated by a comma and no space) (without any argument, a complete
assignment — used as initial upper bound and as a value heuristic — read
from default file ”sol” taken as a certificate or given directly as an addi-
tional input filename with ”.sol” extension and without -x)

5.4 Tree search algorithms and tree decomposition selec-
tion

-hbfs=[integer| hybrid best-first search [2], restarting from the root after a
given number of backtracks (default value is 10000)

-open=|integer]| hybrid best-first search limit on the number of stored open
nodes (default value is -1)

_B=[integer] (0) DFBB, (1) BTD [10], (2) RDS-BTD [26], (3) RDS-BTD with
path decomposition instead of tree decomposition [26] (default value is 0)

-O=[filename] reads either a reverse variable elimination order (given by a
list of variable indexes) from a file in order to build a tree decomposition
(if BTD-like and/or variable elimination methods are used) or reads a
valid tree decomposition directly (given by a list of clusters in topological
order of a rooted forest, each line contains a cluster number, followed by a
cluster parent number with -1 for the first/root(s) cluster(s), followed by
a list of variable indexes). It is also used as a DAC ordering.

-O=[negative integer] build a tree decomposition (if BTD-like and/or vari-
able elimination methods are used) and also a compatible DAC ordering
using

e (-1) maximum cardinality search ordering,

e (-2) minimum degree ordering,
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(-3) minimum fill-in ordering,

(-4) maximum spanning tree ordering (see -mst),
o (-
o (-

o (-

If not specified, then use the variable order in which variables appear in
the problem file.

3)

4)

5) reverse Cuthill-Mckee ordering,

6) approximate minimum degree ordering,
7)

default file ordering

-j=[integer] splits large clusters into a chain of smaller embedded clusters with
a number of proper variables less than this number (use options ”-B=3
-j=1 -svo -k=1” for pure RDS, use value 0 for no splitting) (default value
is 0).

-r=[integer] limit on the maximum cluster separator size (merge cluster with
its father otherwise, use a negative value for no limit) (default value is -1)

-X=[integer] limit on the minimum number of proper variables in a cluster
(merge cluster with its father otherwise, use a zero for no limit) (default
value is 0)

-E=[float] merges leaf clusters with their fathers if small local treewidth (in
conjunction with option ”-e¢” and positive threshold value) or ratio of
number of separator variables by number of cluster variables above a given

threshold (in conjunction with option -vns) (default value is 0)
-R=[integer] choice for a specific root cluster number

-I=[integer]| choice for solving only a particular rooted cluster subtree (with
RDS-BTD only)

5.5 Variable neighborhood search algorithms

-vns unified decomposition guided variable neighborhood search [25] (UDGVNS).
A problem decomposition into clusters can be given as *.dec, *.cov, or
* order input files or using tree decomposition options such as -O. For
a parallel version (UPDGVNS), use "mpirun -n [NbOfProcess] toulbar2
-vns problem.wcsp”.

-vnsini=[integer] initial solution for VNS-like methods found: (-1) at random,
(-2) min domain values, (-3) max domain values, (-4) first solution found
by a complete method, (k=0 or more) tree search with k discrepancy max
(-4 by default)

-ldsmin=[integer| minimum discrepancy for VNS-like methods (1 by default)

-ldsmax=[integer] maximum discrepancy for VNS-like methods (number of
problem variables multiplied by maximum domain size -1 by default)
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-ldsinc=[integer] discrepancy increment strategy for VNS-like methods using
(1) Addl, (2) Mult2, (3) Luby operator (2 by default)

-kmin=[integer| minimum neighborhood size for VNS-like methods (4 by de-
fault)

-kmax=[integer] maximum neighborhood size for VNS-like methods (number
of problem variables by default)

-kinc=[integer] neighborhood size increment strategy for VNS-like methods
using: (1) Addl, (2) Mult2, (3) Luby operator (4) Addl/Jump (4 by
default)

-best=[integer] stop VNS-like methods if a better solution is found (default
value is 0)

5.6 Node processing & bounding options

-e=|[integer| performs “on the fly” variable elimination of variable with small
degree (less than or equal to a specified value, default is 3 creating a
maximum of ternary cost functions). See [I7].

-k=[integer] soft local consistency level (NC [I8] with Strong NIC for global
cost functions=0 [2I], (G)AC=1 [27,[18], D(G)AC=2 [§], FD(G)AC=3 [19],
(weak) ED(G)AC=4 [I1], 22]) (default value is 4). See also [7 23].

-A=[integer]| enforces VAC [] at each search node with a search depth less
than a given value (default value is 0)

-V VAC-based value ordering heuristic (default option)

-dee=[integer]| restricted dead-end elimination [9] (value pruning by domi-
nance rule from EAC value (dee>= 1 and dee<= 3)) and soft neighbor-
hood substitutability (in preprocessing (dee=2 or dee=4) or during search
(dee=3)) (default value is 1)

-0 ensures an optimal worst-case time complexity of DAC and EAC (can be

slower in practice)

5.7 Branching, variable and value ordering

-svo searches using a static variable ordering heuristic. The variable order value
used will be the same order as the DAC order.

-b searches using binary branching (by default) instead of n-ary branching.
Uses binary branching for interval domains and small domains and di-
chotomic branching for large enumerated domains (see option -d).

-c searches using binary branching with last conflict backjumping variable or-
dering heuristic [20].
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-q=[integer] use weighted degree variable ordering heuristic [5] if the number
of cost functions is less than the given value (default value is 1000000).

-var=|[integer| searches by branching only on the first [given value] decision
variables, assuming the remaining variables are intermediate variables that
will be completely assigned by the decision variables (use a zero if all
variables are decision variables, default value is 0)

-m=/[integer| use a variable ordering heuristic that selects first variables such
that the sum of the mean (m=1) or median (m=2) cost of all incident cost
functions is maximum [4] (in conjunction with weighted degree heuristic
-q) (default value is 0: unused).

-d=[integer| searches using dichotomic branching. The default d=1 splits
domains in the middle of domain range while d=2 splits domains in the
middle of the sorted domain based on unary costs.

-sortd sorts domains in preprocessing based on increasing unary costs ( works
only for binary WCSPs).

5.8 Console output

-help shows the default help message that TOULBAR2 prints when it gets no
argument.

-v=[integer] sets the verbosity level (default 0).

-Z=[integer] debug mode (save problem at each node if verbosity option -
v=num >= 1 and -Z=num >= 3)

-s shows each solution found during search. The solution is printed on one line,
giving the value (integer) of each variable successively in increasing file
order.

5.9 File output

-w=[filename] writes last/all solutions found in the specified filename (or ”sol”
if no parameter is given). The current directory is used as a relative path.

-z=[filename] saves problem in wcsp format in filename (or ”problem.wcsp”
if no parameter is given) writes also the graphviz dot file and the degree
distribution of the input problem

-z=[integer| 1: saves original instance (by default), 2: saves after preprocess-
ing (this option can be used in combination with -z=filename)

-x=[(,i=a)*)] assigns variable of index i to value a (multiple assignments are
separated by a comma and no space) (without any argument, a complete
assignment — used as initial upper bound and as value heuristic — read
from default file "sol” or given as input filename with ”.sol” extension)
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5.10 Probability representation and numerical control

-precision=[integer| probability/real precision is a conversion factor (a power
of ten) for representing fixed point numbers (default value is 7)

-epsilon=[float] approximation factor for computing the partition function
(greater than 1, default value is infinity)

5.11 Random problem generation

-random=|[bench profile] bench profile must be specified as follows.

e n and d are respectively the number of variable and the maximum
domain size of the random problem.

bin-n-d-t1-p2-seed

— t1 is the tightness in percentage % of random binary cost func-

tions

— p2 is the number of binary cost functions to include

— the seed parameter is optional
binsub-n-d-t1-p2-p3-seed binary random & submodular cost func-
tions

— t1 is the tightness in percentage % of random cost functions

— p2 is the number of binary cost functions to include

— p3 is the percentage % of submodular cost functions among p2
cost functions (plus 10 permutations of two randomly-chosen val-
ues for each domain)

tern-n-d-t1-p2-p3-seed

— p3 is the number of ternary cost functions
nary-n-d-t1-p2-p3...-pn-seed

— pn is the number of n-ary cost functions
salldiff-n-d-t1-p2-p3...-pn-seed

— pn is the number of salldiff global cost functions (p2 and p3 still
being used for the number of random binary and ternary cost
functions). salldiff can be replaced by gcc or regular keywords
with three possible forms (e.g., sgce, sgeedp, wygcce).

6 Input File formats

Notice that by default TOULBAR2 distinguishes file formats based on their ex-
tension.
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6.1 cfn format (.cfn and .cfn.gz file extension)
With this JSON compatible format, it is possible:
e to give a name to variables and functions.

e to associate a local label to every value that is accessible inside toulbar2
(among others for heuristics design purposes).

e to use decimal and possibly negative costs.
e to solve both minimization and maximization problems.

e to debug your .cfn files: the parser gives a cause and line number when it
fails.

e to use gzip-compressed files directly as input (.cfn.gz).
e to use dense descriptions for dense cost tables.

See a full description in file document CFNformat.pdf in the doc repository
on GitHub or directly on the toulbar2 Web site.

6.2 wcsp format (.wcsp file extension)

It is a text format composed of a list of numerical and string terms separated
by spaces. Instead of using names for making reference to variables, variable
indexes are employed. The same for domain values. All indexes start at zero.

Cost functions can be defined in intention (see below) or in extension, by
their list of tuples. A default cost value is defined per function in order to reduce
the size of the list. Only tuples with a different cost value should be given (not
mandatory). All the cost values must be positive. The arity of a cost function in
extension may be equal to zero. In this case, there is no tuples and the default
cost value is added to the cost of any solution. This can be used to represent a
global lower bound constant of the problem.

The wesp file format is composed of three parts: a problem header, the list
of variable domain sizes, and the list of cost functions.

e Header definition for a given problem:

<Problem name>

<Number of variables (N)>

<Maximum domain size>

<Number of cost functions>

<Initial global upper bound of the problem (UB)>

The goal is to find an assignment of all the variables with minimum total
cost, strictly lower than UB. Tuples with a cost greater than or equal to
UB are forbidden (hard constraint).

e Definition of domain sizes
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<Domain size of variable with index 0>

<Domain size of variable with index N - 1>

Note

domain values range from zero to size-1
a negative domain size is interpreted as a variable with an interval
domain in [0, —size — 1]

Warning

variables with interval domains are restricted to arithmetic and dis-
junctive cost functions in intention (see below)

e General definition of cost functions

— Definition of a cost function in extension

<Arity of the cost function>
<Index of the first variable in the scope of the cost function>

<Index of the last variable in the scope of the cost function>
<Default cost value>
<Number of tuples with a cost different than the default cost>

followed by for every tuple with a cost different than the default cost:

<Index of the value assigned to the first variable in the scope>

<Index of the value assigned to the last variable in the scope>
<Cost of the tuple>

Note

Shared cost function: A cost function in extension can be shared
by several cost functions with the same arity (and same domain
sizes) but different scopes. In order to do that, the cost function
to be shared must start by a negative scope size. Each shared
cost function implicitly receives an occurrence number starting
from 1 and incremented at each new shared definition. New
cost functions in extension can reuse some previously defined
shared cost functions in extension by using a negative num-
ber of tuples representing the occurrence number of the desired
shared cost function. Note that default costs should be the
same in the shared and new cost functions. Here is an exam-
ple of 4 variables with domain size 4 and one AllDifferent hard
constraint decomposed into 6 binary constraints.

— Shared CF used inside a small example in wesp format:

AllDifferentDecomposedIntoBinaryConstraints 4 4 6 1

4444

20104

00
11

1
1
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21
31
020 -
030 -
120 -
130 -
230 -

BN

— Definition of a cost function in intension by replacing the default cost
value by -1 and by giving its keyword name and its K parameters

<Arity of the cost function>
<Index of the first variable in the scope of the cost function>

<Index of the last variable in the scope of the cost function>
-1

<keyword>

<parameteril>

<parameterK>

Possible keywords of cost functions defined in intension followed by their specific
parameters:

e >= cst delta to express soft binary constraint x > y + cst with associated
cost function maz((y + cst — x < delta)?(y + cst — x) : UB,0)

e > cst delta to express soft binary constraint x > y + cst with associated
cost function maz((y + cst +1 —x < delta)?(y +cst +1 —z) : UB,0)

o <= cst delta to express soft binary constraint x < y + c¢st with associated
cost function maz((xz — est —y < delta)?(x — cst —y) : UB,0)

e < cst delta to express soft binary constraint x < y + cst with associated
cost function maz((x —ecst +1 —y < delta)?(z —cst+1—y) : UB,0)

e = cst delta to express soft binary constraint x = y + cst with associated
cost function (|y + cst — x| < delta)?|y + cst — x| : UB

e disj cstr csty penalty to express soft binary disjunctive constraint z >
y + csty Vy > x + cstx with associated cost function (x > y + csty Vy >
x + estx)?0 : penalty

e sdisj cstr csty xinfty yinfty costr costy to express a special disjunctive
constraint with three implicit hard constraints < xinfty and y < yin fty
and z < zinfty Ay < yinfty = (x > y+ csty Vy > = + cstz) and an
additional cost function ((z = xinfty)?costx : 0) + ((y = yinfty)?costy :
0)

e Global cost functions using a flow-based propagator:

— salldiff var|dec|decbi cost to express a soft alldifferent constraint with
either variable-based (var keyword) or decomposition-based (dec and
decbi keywords) cost semantic with a given cost per violation (decbi
decomposes into a binary cost function complete network)
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— sgece var|dec|wdec cost nb_values (value lower_bound upper_bound (shortage-
_weight excess_weight)?)* to express a soft global cardinality con-
straint with either variable-based (var keyword) or decomposition-
based (dec keyword) cost semantic with a given cost per violation
and for each value its lower and upper bound (if wdec then violation
cost depends on each value shortage or excess weights)

— ssame cost list_sizel list_size2 (variable_index) (variable_indez)x to
express a permutation constraint on two lists of variables of equal
size (implicit variable-based cost semantic)

— sregular var|edit cost nb_states nb_initial_states (state)x nb_final_states
(state)*x nb_transitions (start_state symbolvalue end_state)x to ex-
press a soft regular constraint with either variable-based (var key-
word) or edit distance-based (edit keyword) cost semantic with a
given cost per violation followed by the definition of a deterministic
finite automaton with number of states, list of initial and final states,
and list of state transitions where symbols are domain values

e Global cost functions using a dynamic programming DAG-based propagator-

— sregulardp var cost nb_states nb_initial_states (state)x nb_final_states
(state)*x nb_transitions (start-state symbol_value end_state)x to ex-
press a soft regular constraint with a variable-based (var keyword)
cost semantic with a given cost per violation followed by the defini-
tion of a deterministic finite automaton with number of states, list
of initial and final states, and list of state transitions where symbols
are domain values

— sgrammar|sgrammardp var|weight cost nb_symbols nb_values start_-
symbol nb_rules ((0 terminal_symbol value)|(1 nonterminal_in nonterminal-
_out_left nonterminal_out_right)|(2 terminal_symbol value weight)|(3
nonterminal_in nonterminal_out_left nonterminal_out_right weight))x*
to express a soft/weighted grammar in Chomsky normal form

— samong|samongdp var cost lower_bound upper_bound nb_values (value)*
to express a soft among constraint to restrict the number of variables
taking their value into a given set of values

— salldiffdp var cost to express a soft alldifferent constraint with variable-
based (var keyword) cost semantic with a given cost per violation
(decomposes into samongdp cost functions)

— sgeedp var cost nb_values (value lower_bound upper_bound)* to express
a soft global cardinality constraint with variable-based (var keyword)
cost semantic with a given cost per violation and for each value its
lower and upper bound (decomposes into samongdp cost functions)

— max|smaxdp defCost nbtuples (variable value cost)* to express a weighted
max cost function to find the maximum cost over a set of unary cost
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functions associated to a set of variables (by default, defCost if un-
specified)

MST|smstdp to express a spanning tree hard constraint where each
variable is assigned to its parent variable index in order to build a
spanning tree (the root being assigned to itself)

e Global cost functions using a cost function network-based propagator [1]:

wregular nb_states nb_initial_states (state and cost)* nb_final_states
(state and cost)* nb_transitions (start_state symbol_value end_state
cost)* to express a weighted regular constraint with weights on initial
states, final states, and transitions, followed by the definition of a
deterministic finite automaton with number of states, list of initial
and final states with their costs, and list of weighted state transitions
where symbols are domain values

walldiff hard|lin|quad cost to express a soft alldifferent constraint as
a set of wamong hard constraint (hard keyword) or decomposition-
based (lin and quad keywords) cost semantic with a given cost per
violation

wgee hard|lin|quad cost nb_values (value lower_bound upper_bound)x
to express a soft global cardinality constraint as either a hard con-
straint (hard keyword) or with decomposition-based (lin and quad
keyword) cost semantic with a given cost per violation and for each
value its lower and upper bound

wsame hard|lin|quad cost to express a permutation constraint on two
lists of variables of equal size (implicitly concatenated in the scope)
using implicit decomposition-based cost semantic

wsamegcc hard|lin|quad cost nb_values (value lower_bound upper_-
bound)x to express the combination of a soft global cardinality con-
straint and a permutation constraint

wamong hard|lin|quad cost nb_values (value)x lower_bound upper--
bound to express a soft among constraint to restrict the number of
variables taking their value into a given set of values

wvaramong hard cost nb_values (value)x to express a hard among
constraint to restrict the number of variables taking their value into
a given set of values to be equal to the last variable in the scope

woverlap hard|lin|quad cost comparator righthandside overlaps be-
tween two sequences of variables X, Y (i.e. set the fact that Xi and
Yi take the same value (not equal to zero))

wsum hard|lin|quad cost comparator righthandside to express a soft
sum constraint with unit coefficients to test if the sum of a set of
variables matches with a given comparator and right-hand-side value
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— wvarsum hard cost comparator to express a hard sum constraint to
restrict the sum to be comparator to the value of the last variable in
the scope
Let us note <> the comparator, K the right-hand-side value asso-
ciated to the comparator, and Sum the result of the sum over the
variables. For each comparator, the gap is defined according to the
distance as follows:

if <> is ==: gap = abs(K - Sum)

if <> is <=: gap = max(0,Sum - K)

if <>is < : gap = max(0,Sum - K - 1)

if <> is!=: gap = 1if Sum != K and gap = 0 otherwise

if <> is > : gap = max(0,K - Sum + 1);

if <> is >=: gap = max(0,K - Sum);

EEE S S

Warning

Note

The decomposition of wsum and wvarsum may use an exponential size
(sum of domain sizes).

list_sizel and list_size2 must be equal in ssame.

Cost functions defined in intention cannot be shared.

More about network-based global cost functions can be found here https-
://metivier.users.greyc.fr/decomposable/

Examples:

quadratic cost function z0 * z1 in extension with variable domains {0, 1}
(equivalent to a soft clause 20 V —z1):

20101111

simple arithmetic hard constraint z1 < x2:

212-1<00

hard temporal disjunction z1 > 22 +2V 22 > z1 + 1:

212-1disj 12UB

soft_alldifferent({x0,x1,x2,x3}):

40123 -1 salldiff var 1

soft_gee({x1,x2,x3,x4}) with each value v from 1 to 4 only appearing at
least v-1 and at most v+1 times:
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41234-1sgccvar 14102213324435

soft_same({x0,x1,x2,x3},{x4,x5,x6,x7}):
801234567 -1ssame 14401234567

soft_regular({x1,x2,x3,x4}) with DFA (3%)+(4%):

41234-1sregular var 12102013030041141

soft_grammar({x0,x1,x2,x3}) with hard cost (1000) producing well-formed
parenthesis expressions:

40123 -1 sgrammardp var 1000 4 206 1000101210131203010031

soft_among({x1,x2,x3,x4}) with hard cost (1000) if 3°_ (z; € {1,2}) < 1
or Z?:l(mi € {1,2}) > 3:

41234 -1 samongdp var 1000 1 3 2 1 2

soft max({x0,x1,x2,x3}) with cost equal to max}_,((z;! = i)?71000 : (4 —

40123 -1 smaxdp 1000 4 004113222331
wregular({x0,x1,x2,x3}) with DFA (0(10)%2x):

40123-1wregular 3100120900100111021111001001120112201021112
1

wamong ({x1,x2,x3,x4}) with hard cost (1000) if Z?:l(xi €{1,2}) <1
or YO (x € {1,2}) > 3:

4123 4 -1 wamong hard 1000 2 1 2 1 3

wvaramong ({x1,x2,x3,x4}) with hard cost (1000) if Zf’:l(xi €{1,2}) #
Ty:

412 3 4 -1 wvaramong hard 1000 2 1 2

woverlap({x1,x2,x3,x4}) with hard cost (1000) if 272:1(:51 =Zi40) > Lt

412 3 4 -1 woverlap hard 1000 < 1

wsum ({x1,x2,x3,x4}) with hard cost (1000) if Zj‘:l(xi) # 4:

41234 -1 wsum hard 1000 == 4

wvarsum ({x1,x2,x3,x4}) with hard cost (1000) if Z?:1($i) # T4
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41234 -1 wvarsum hard 1000 ==

Latin Square 4 x 4 crisp CSP example in wcsp format:

latind 16 4 8 1
444444484848844848444
40123 -1 salldiff var 1
44567 -1 salldiff var 1

4 89 10 11 -1 salldiff var 1
4 12 13 14 15 -1 salldiff var 1
4 048 12 -1 salldiff var 1
4159 13 -1 salldiff var 1

4 26 10 14 -1 salldiff var 1
4 37 11 156 -1 salldiff var 1

4-queens binary weighted CSP example with random unary costs in wcsp
format:

QUEENS 4 4 10 5
44
1010

08

08

CUNMNNNNINNNTWNANNANANAWAANNANNANOANNNANNAWANANNAANANGO A A NGO A A

4~
44
20
00
01
10
11
12
21
22
23
32
33
20
00
02
11
13
20
22
31
33
20
00
03
11
22
30
33
21
00
01
10
11
12
21
22
23
32
33
21
00
02
11
13
20
22
31
33
22
00
01
10
11
12
21
22
23
32
33
10
11
31
1102
11

21

12

02
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6.3 UAI and LG formats (.uai, .LG)

It is a simple text file format specified below to describe probabilistic graphical
model instances. The format is a generalization of the Ergo file format initially
developed by Noetic Systems Inc. for their Ergo software.

e Structure

A file in the UAI format consists of the following two parts, in that order:
<Preamble>
<Function tables>

The contents of each section (denoted < ... > above) are described in the
following:

Preamble

The preamble starts with one line denoting the type of network. This will
be either BAYES (if the network is a Bayesian network) or MARKOV
(in case of a Markov network). This is followed by a line containing the
number of variables. The next line specifies each variable’s domain size,
one at a time, separated by whitespace (note that this implies an order
on the variables which will be used throughout the file).

The fourth line contains only one integer, denoting the number of functions
in the problem (conditional probability tables for Bayesian networks, gen-
eral factors for Markov networks). Then, one function per line, the scope
of each function is given as follows: The first integer in each line specifies
the size of the function’s scope, followed by the actual indexes of the vari-
ables in the scope. The order of this list is not restricted, except when
specifying a conditional probability table (CPT) in a Bayesian network,
where the child variable has to come last. Also note that variables are
indexed starting with 0.

For instance, a general function over variables 0, 5 and 11 would have this
entry:

30511

A simple Markov network preamble with three variables and two functions
might for instance look like this:
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MARKOV

The first line denotes the Markov network, the second line tells us the
problem consists of three variables, let’s refer to them as X, Y, and Z.
Their domain size is 2, 2, and 3 respectively (from the third line). Line
four specifies that there are 2 functions. The scope of the first function is
X,Y, while the second function is defined over X,Y,Z.

An example preamble for a Belief network over three variables (and there-
fore with three functions) might be:

The first line signals a Bayesian network. This example has three variables,
let’s call them X, Y, and Z, with domain size 2, 2, and 3, respectively (from
lines two and three). Line four says that there are 3 functions (CPTs in
this case). The scope of the first function is given in line five as just X
(the probability P(X)), the second one is defined over X and Y (this is
(Y | X)). The third function, from line seven, is the CPT P(Z | Y). We
can therefore deduce that the joint probability for this problem factors as
P(X,Y,Z) = P(X).P(Y | X).P(Z | Y).

Function tables

In this section each function is specified by giving its full table (i.e, spec-
ifying the function value for each tuple). The order of the functions is
identical to the one in which they were introduced in the preamble.

For each function table, first the number of entries is given (this should
be equal to the product of the domain sizes of the variables in the scope).
Then, one by one, separated by whitespace, the values for each assign-
ment to the variables in the function’s scope are enumerated. Tuples are
implicitly assumed in ascending order, with the last variable in the scope
as the ’least significant’.

To illustrate, we continue with our Bayesian network example from above,
let’s assume the following conditional probability tables:

X P(X)
0 0.436
1 0.564
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X Y PY|X)
0 0 0128
0 1 0872
10 0920
1 1  0.080
Y Z  PZY)
0 0 0210
0 1 0333
0 2 0457
1 0 0811
1 1  0.000
1 2 0.189

The corresponding function tables in the file would then look like this:
2

0.436 0.564

4

0.128 0.872

0.920 0.080

6

0.210 0.333 0.457
0.811 0.000 0.189

(Note that line breaks and empty lines are effectively just whitespace,
exactly like plain spaces ” 7. They are used here to improve readability.)

In the LG format, probabilities are replaced by their logarithm.

Summary

To sum up, a problem file consists of 2 sections: the preamble and the full
the function tables, the names and the labels.

For our Markov network example above, the full file could be:

4.000 2.400
1.000 0.000

12

2.2500 3.2500 3.7500
0.0000 0.0000 10.0000
1.8750 4.0000 3.3330
2.0000 2.0000 3.4000
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Here is the full Bayesian network example from above:

N}

0.436 0.564
4
0.128 0.872
0.920 0.080
6

0.210 0.333 0.457
0.811 0.000 0.189

e Expressing evidence

Evidence is specified in a separate file. This file has the same name as
the original problems file but an added .evid extension at the end. For
instance, problem.uai will have evidence in problem.uai.evid.

The file simply starts with a line specifying the number of evidence vari-
ables. This is followed by the pairs of variable and value indexes for each
observed variable, one pair per line. The indexes correspond to the ones
implied by the original problem file.

If, for our above example, we want to specify that variable Y has been
observed as having its first value and Z with its second value, the file
example.uai.evid would contain the following:

2
10
21

6.4 Partial Weighted MaxSAT format
Max-SAT input format (.cnf)

The input file format for Max-SAT will be in DIMACS format:

c
¢ comments Max-SAT
c

p cnf 3 4

1-20

-12-30

320

130

e The file can start with comments, that is lines beginning with the character

707.

e Right after the comments, there is the line ”p cnf nbvar nbclauses” indi-
cating that the instance is in CNF format; nbvar is the number of variables
appearing in the file; nbclauses is the exact number of clauses contained
in the file.
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e Then the clauses follow. Each clause is a sequence of distinct non-null
numbers between -nbvar and nbvar ending with 0 on the same line. Pos-
itive numbers denote the corresponding variables. Negative numbers de-
note the negations of the corresponding variables.

Weighted Max-SAT input format (.wcnf)

In Weighted Max-SAT, the parameters line is ”p wenf nbvar nbclauses”. The
weights of each clause will be identified by the first integer in each clause line.
The weight of each clause is an integer greater than or equal to 1.

Example of Weighted Max-SAT formula:

c
¢ comments Weighted Max-SAT
c

p wenf 3 4

101-20

3-12-30

8-320

5130

Partial Max-SAT input format (.wenf)

In Partial Max-SAT, the parameters line is ”p wenf nbvar nbclauses top”.
We associate a weight with each clause, which is the first integer in the clause.
Weights must be greater than or equal to 1. Hard clauses have weight top and
soft clauses have weight 1. We assume that top is a weight always greater than
the sum of the weights of violated soft clauses.

Example of Partial Max-SAT formula:

c
c comments Partial Max-SAT
c

p wenf 4 5 15

151 -240

156 -1 -2 30

1-2-40

1-320

1130

Weighted Partial Max-SAT input format (.wcnf)

In Weighted Partial Max-SAT, the parameters line is ”p wenf nbvar nbclauses
top”. We associate a weight with each clause, which is the first integer in the
clause. Weights must be greater than or equal to 1. Hard clauses have weight
top and soft clauses have a weight smaller than top. We assume that top is a
weight always greater than the sum of the weights of violated soft clauses.

Example of Weighted Partial Max-SAT formula:

c
¢ comments Weighted Partial Max-SAT
c

p wenf 4 5 16

161-240

16 -1-230

8-2-40

4-320

3130
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6.5 QPBO format (.qpbo)

In the quadratic pseudo-Boolean optimization (unconstrained quadratic pro-
gramming) format, the goal is to minimize or maximize the quadratic function:

N N
XI*W*X:ZZWZJ*Xl*XJ
i=1 j=1

where W is a symmetric squared N x N matrix expressed by all its non-zero
half (i < j) squared matrix coefficients, X is a vector of N binary variables with
domain values in {0,1} or {1,—1}, and X’ is the transposed vector of X.

Note that for two indices i # j, coefficient W;; = W), (symmetric matrix)
and it appears twice in the previous sum. Note also that coefficients can be
positive or negative and are real float numbers. They are converted to fixed-
point real numbers by multiplying them by 10P"¢¢i*i" (see option -precision to
modify it, default value is 7). Infinite coefficients are forbidden.

Notice that depending on the sign of the number of variables in the first text
line, the domain of all variables is either {0,1} or {1,—1}.

Warning! The encoding in Weighted CSP of variable domain {1, —1} asso-
ciates for each variable value the following index: value 1 has index 0 and value
-1 has index 1 in the solutions found by toulbar2. The encoding of variable
domain {0, 1} is direct.

Qpbo is a file text format:

e First line contains the number of variables NV and the number of non-zero
coefficients M.

If N is negative then domain values are in {1, —1}, otherwise {0,1}. If M
is negative then it will maximize the quadratic function, otherwise it will
minimize it.

e Followed by |M]| lines where each text line contains three values separated
by spaces: position index i (integer belonging to [1,|N|]), position index
J (integer belonging to [1,|N]]), coefficient W;; (float number) such that
7 S] and Wij 75 0
6.6 Linkage format (.pre)

See mendelsoft companion software at http://www.inra.fr/mia/T/MendelSoft
for pedigree correction. See alsohttps://carlit.toulouse.inra.fr/cgi-bin/
awki.cgi/HaplotypeInference for haplotype inference in half-sib families.

7 Using it as a library

See TOULBARZ reference manual which describes the libth2.so C++ library API.
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8

Using it from Python/Numberjack

See http://numberjack.ucc.ie|
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