
CS533 Project Report: Tiptop

Kevin Dyer and Paul Vu

November 26, 2012

1 Introduction

Hardware performance counters are architecture-specific special-purpose registers integrated into
modern central processing units (CPUs) used for performance profiling. As an example, modern
Intel processors support hardware counters that report events such as CPU utilization, L1 cache
misses, branch mispredictions and a host of other CPU-specific performance indicators. This in-
formation is invaluable when profiling low-level software performance. What is more, compared
to traditional software-based profiling, hardware performance counters incur negligible overhead
because they are integrated into the hardware. However, support for hardware counters is still in
early stages, and was not integrated into the Linux kernel until the 2.6.31 release. In addition, some
architectures support hardware counters, but have a hard limit on the number of events, sometimes
only two or four, that can be monitored at a time.

Tiptop [3] is an application developed by Erven Rohou1 and is an attempt towards an intuitive
interface for accessing hardware performance counters in modern CPUs. The interface for tiptop
is similar to the popular top2 utility. In tiptop’s default configuration, it provides real-time per-
process hardware counter statistics, such as the number of CPU instructions executed per-process.
The values that appear on the real-time screen are configurable by the user. Through use of an
XML file, multiple screens can be configured and flipped through. In Figure 1 we have a screenshot
of tiptop’s default screen, and highlight a few of its key features.

Despite tiptop’s advantages, we identified a number of limitations. As one example, the Pentium
III supports 80 hardware counter events, but can track at most two in parallel [4]. However, the
default tiptop screen assumes that the underlying architecture can track five hardware counters
events. In addition, we found that building XML files was cumbersome and platform-specific.
To compound this problem, tiptop exposes less than 20% of the hardware performance counters
available across platforms. In many cases, tracking a hardware counter not currently supported by
tiptop requires modification and recompilation of tiptop’s C source files.

In light of these limitations, we identified two feature enhancements for tiptop. First, we en-
hanced tiptop to display the number of threads per-process as a default feature. Then, as a substan-
tial feature enhancement, we integrated the cross-platform Performance Application Programming
Interface (PAPI) [2] library into tiptop as an alternative API to access hardware counters. (This is
backwards-compatible change, and use of the PAPI API is optional when creating an XML configu-
ration file.) Integration with PAPI increases the breadth of platforms and kernel versions supported
by tiptop. Now, tiptop can run with kernel versions prior to 2.6.31, via a PAPI-supplied kernel
patch. In addition, through software multiplexing, PAPI enables the number of hardware counter

1erven.rohou@inria.fr
2http://sourceforge.net/projects/unixtop/

1



branch misprediction percentCPU utilization

tiptop
screen

tasks
running/
displayed

Figure 1: A screenshot of the default screen for tiptop version 2.1. Each row in the display represents
a single process. In the top-left corner we have the number of running and displayed processes. By
default, tiptop only displays processes that have non-zero CPU utilization. In the bottom-left we
highlight the CPU utilization, reported as percentage of cycles used since the last screen refresh. In
the bottom-right corner we highlight the number of branch mispredictions. Finally, in the top-right
we highlight the label for the current screen. Multiple views with custom columns can be configured
and flipped through (using the right and left arrow keys) in real-time.

events to exceed the hard limit imposed by the hardware. Finally, the integration with PAPI sim-
plifies the process of creating cross-platform XML configuration files for tiptop hardware counters
can be specified by using PAPI-specific macros, by abstracting architecture-specific configuration
options from the user.

In addition to feature enhancements, we identified two tiptop bugs, and confirmed them through
personal communications with lead developer Erven Rohou. Both bugs prevent tiptop from cor-
rectly displaying hardware counter statistics under specific conditions. For the first bug, we identi-
fied a solution that minimizes the probability that the bug occurs, and will work with Erven Rohou
to include our patch into the main branch of the tiptop source. The second bug remains unresolved,
but can be avoided by running tiptop as root.

In section 2 we give an overview of our high-level development cycle and the tools we used to
repair and enhance tiptop. In section 3 we give further details about our feature enhancements
and bugfixes. We conclude in section 4 with a discussion about additional feature improvements
for future versions of tiptop.

2 Methodology

In our development we started with tiptop version 2.1, which (optionally) depends upon the libxml23

and ncurses4 libraries. Tiptop is written in C [1] and all our improvements and bugfixes were
implemented in C, too. As a key feature enhancement, we integrated the PAPI [2] library into
tiptop. In our testing we used Python5 and C to automate the process of verifying bug fixes and

3http://www.xmlsoft.org/
4http://www.gnu.org/software/ncurses/
5http://www.python.org/

2



feature enhancements.
Fortunately, tiptop has an integral feature called batch mode, which enables tiptop to output

statistics to stdout, rather than the default real-time display. The batch mode feature greatly
simplified the testing process and enabled us to easily extract process statistics from tiptop.

Roughly, we can describe our methodology as a three-step process.

1. Identify feature or bug.

2. Develop code to enhance or fix tiptop.

3. Use Python (and sometimes C) to develop unit tests that execute tiptop, then parse and
verify the output, and ensure that the enhancement produces expected output, or the bug is
resolved.

In many cases we face the challenge of knowing what the “correct” statistics are for an appli-
cation. As an example, we are not aware of a trivial way to know the correct value for the number
of threads for a Chrome browser process. In such cases we constructed applications with known
values, such as a simple C program that spawns N threads, and verified that tiptop reported the
values correctly for our simple, and deterministic, application.

3 Results

In this section we start with an overview of our feature enhancements. Then, we follow with a
discussion of the bugs we identified in tiptop.

3.1 Feature Enhancements

Roughly, we enhanced tiptop with two new features. First, we enhanced the default screen to
include the number of threads per process. Then, we added into tiptop the the cross-platform
Performance Application Programming Interface (PAPI) [2] library, this enables a new, and more
robust way, for tiptop to access performance counters. We will discuss each of these feature in turn.

3.1.1 Thread count on main screen

The primary focus for tiptop is to enable a user to view hardware counters in real-time. However,
there are other variables that can indirectly influence hardware performance. As an example, say
a developer wants to investigate the effect of inter-thread cache contention on the performance of
their application. Especially in cases when the number of threads in a process is not deterministic,
it would be valuable to have the thread count on the tiptop screen. Therefore, we enabled tiptop
to display the number of threads per process, and we included this feature on the default screen.

In our implementation we added hooks to the XML configuration logic to enable the ability to
display the number of threads per process. This involved adding code at multiple layers, including
a call that exposed thread count from tiptops’s data-gathering layer to the layer that handles
presentation logic. In addition, tiptop has multiple modes, which influence the filter that is applied
to the processes/threads to be displayed. As an example, tiptop can be run with the -H flag, in
order to show per-thread information, rather than per-process. In such a case we do not want to
display thread count, and our implementation includes logic such that thread count only appears
in the case when we filter by processes.

In the testing of this feature we did the following, using Python and C.

3



number of threads
for each process

Figure 2: A screenshot of the enhanced tiptop homescreen, showing the number of threads in each
process.

1. Execute a C program that spawns N threads.

2. Start tiptop in batch mode.

3. Execute tiptop, parse the output and verify that tiptop displays N threads for the long-
running C process.

Our tests passed on Ubuntu 12.04 executing a simple C program that invokes threads through
the pthreads library, for values N ∈ {1, 10, 100}. In Figure 2 we have a screenshot of the enhanced
default screen with the thread-count column, #TH, highlighted.

3.1.2 Integration with the PAPI library

As our next feature for tiptop, we integrated support for the Performance Application Program-
ming Interface (PAPI) library. The PAPI library is a cross-platform API for accessing hardware
performance counters. Roughly, it is a interface that removes the complexity involved in accessing
hardware performance counters.

Consider the following concrete example for why integration with PAPI enhances tiptop. The
man page for tiptop gives the following example for a way to manually specify a counter that
records the number of issued mico-ops on Sandy Bridge:

<counter alias="uops_issued"

config="0x010e"

type="RAW"

arch="x86"

model="06_2A" />

Then we must construct the column on the tiptop screen, too, which references the uops issued

counter:

<column header=" U Ops"

4



screen defined by XML 
configuration file

all counters collected 
with PAPI

Figure 3: The tiptop home screen implemented using the PAPI API. One side effect of using PAPI
is that zero-values appear as - on the tiptop output. This was an inadvertent side-effect, but makes
the screen more readable.

format="%5.1f"

expr="uops_issued" />

The values for config and model in the counter tag are hardware-specific, and require that the
user identifies the appropriate values in architecture-specific documentation in order to implement
an alias, which can then be used to construct a column in a custom tiptop screen. Indeed, it is
less than ideal that a user must specify magic numbers for their CPU. What is more, this is not
portable, an alias for uops issued on a different platform will require different config and model

values. This is certainly a nightmare when developing a tiptop screen that may be used across
multiple platforms.

Fortunately, PAPI makes life much easier. Instead of having to specify a hardware-specific
counter macro, then reference the macro for display, our new feature enables a user to specify the
PAPI event directly. There are 103 counter events specified in PAPI 5.0.1, and our integration with
PAPI enables a user specify the PAPI-defined macro. As an example, the following declaration
would be able to integrate directly into the tiptop XML file

<column header=" U Ops"

format="%5.1f"

expr="PAPI_FP_OPS" />

It is then up to PAPI to determine the correct hooks for a hardware counter, and the burden is not
on the user to identify magic numbers. This is cross-platform, as far as PAPI supports the specific
counter specified. Hence, the user does not have to specify a custom hardware-specific counter

macro, and a single XML file can be specified and deployed across multiple system. In addition,
this is backwards compatible with previous versions of tiptop configurations files, and the prefix
PAPI for an expr attribute in a column tag, is a flag for tiptop to call PAPI, rather than using a
direct kernel call for hardware counters.

5



field default expression PAPI expression

Millions of cycles (Mcycle) delta(CYCLE) / 1000000 PAPI TOT CYC / 1000000

Millions of instructions (Minstr) delta(INSN) / 1000000 PAPI TOT INS / 1000000

Instructions per Cycle (IPC) delta(INSN) / delta(CYCLE) PAPI TOT INS / PAPI TOT CYC

Instruction cache miss % (%MISS) 100 * delta(MISS) / delta(INSN) 100 * PAPI L1 ICM / PAPI TOT INS

Branch misprediction % (%BMIS) 100 * delta(BR) / delta(INSN) 100 * PAPI BR MSP / PAPI TOT INS

Figure 4: The expression changes required in the tiptop XML configuration file in order to use
PAPI, instead of the default direct call to the Linux kernel. The previous expression still work,
and the new PAPI macros simply extend the range of hardware counters that can be accessed from
tiptop.

In addition to a cleaner interface for accessing hardware counters, PAPI implements multiplexing
for hardware counters, which enables a user to specify more counters that are permitted by the
hardware. As previously mentioned, if the underlying architecture is a Pentium III, tiptop is
limited to two hardware counter events. However, PAPI implements multiplexing via high-precision
timeslice sharing. This means that hardware counters are rotated, by default, every 100ms such
that values can be obtained for all requested counters. If we, say, specify four hardware events to
monitor, in a 200ms window PAPI would monitor two hardware events for the first 100ms, then
rotate to monitor the other two hardware events for the remaining 100ms.

Multiplexing does present limitations, if a user wanted to display a value such as instructions
per second, this would require additional logic in order to know the amount of time that a specific
counter was active. We will leave this edge-case as future work.

As an additional feature, integration with PAPI enables tiptop to support a broader range of
kernels. Currently, tiptop supports Linux kernels 2.6.31 and above. PAPI supports Linux kernels
2.6.31 and above out of the box, and supports kernels 2.6.30 and below with a kernel patch.
Tiptop is not compatible with the PAPI patch for pre-2.6.31 kernels, and would require further
modification to work for pre-2.6.31 kernels. Hence, the PAPI integretation enables a greater range
of kernel support without directly modifying tiptop.

Challenges in integrating PAPI with tiptop. When integrating PAPI with tiptop, we en-
countered a number of challenges. First, PAPI’s documentation was nearly non-existent when
describing its ability to multiplex and monitor external processes. A correct implementation re-
quired extensive reading and searching through the PAPI mailing lists. In addition, understanding
tiptop’s workflow and the correct functions to call to release the hardware counters via PAPI took
some effort, too.

Case Study: Building the tiptop default home screen with PAPI. In order to demon-
strate the flexibility of our PAPI integration and its correctness, we implement the default tiptop
screen using PAPI, instead of tiptop’s default behavior of using direct kernel calls. In Figure 3 we
have a screenshot of the tiptop homescreen, implemented by building an XML file that references
PAPI macros. We first notice that the top of the screen the [conf] flag, which indicates that the
tiptop screen is specified by the an XML configuration file.

In Figure 4 we have a listing of the current tiptop expression used to build the default screen,
and the alternative expression that can now be used to access counter via PAPI. These expressions
can be mixed and matched within the same XML file.

As an example of another benefit of PAPI exposed by building the home screen, the tiptop inter-
face exposes MISS (Figure 4) as PERF COUNT HW CACHE MISSES, which in the Linux kernel references

6



Question marks
appear instead

of actual data

Figure 5: A screenshot of the manifestation of the two bugs identified in our development. When
tiptop is unable to determine the values associated with a process it ouputs a question mark instead.
As we can see, tiptop failed to gather statistics for three of the four Chrome processes in the above
screenshot, at the bottom of the screen, in the red box, tiptop reports that [errors] occurred.

either L1 or L2 Instruction Cache misses6. Depending upon your kernel version, for %MISS in Fig-
ure 4 with return either Level 1 or Level 2 instruction cache misses. However, it is clear from the
PAPI macro that we are returning the Level 1 instruction cache miss. If we, say, wanted to report
Level 2 instruction cache misses instead, we simply replace PAPI L1 ICM with PAPI L2 ICM. Alter-
natively, if we wanted, instead, the Level 3 data cache miss, we could use the macro PAPI L3 DCM.

3.2 Bug Fixes

In our initial attempt to understand tiptop and its range of features we encountered an anomaly.
In some cases a question mark would appear, instead of a value from the hardware performance
counter. This would happen consistently for programs such as the Chrome7 web browser, and
would happen sporadically for other applications. In Figure 5 we have a screenshot that highlights
this bug. Upon investigation, we identified two separate issues that lead to this error condition.

Bug 1: Too many open file descriptors. First, a bit of background. Linux systems include
a limits.conf file which enables a systems administrator to have fine-grained control over the
system resources used by users and groups. As an example, it is possible to specify the maximum
priority of a process run by a specific user or group, or even the maximum number of processes
spawned by a specific user or group. Each resource has a hard and soft limit. Hard limits are
enforced by the kernel and can only be modified by superusers. Soft limits are default values and
can be manually raised per-user, up to the hard limit. For example, Ubuntu 12.04 has a soft limit
of 1024 open file descriptors per user, and a hard limit of 4096. This means that a regular user can
open up to 1024 file descriptors under normal circumstances, or can open up to 4096 file descriptors
by explicitly requesting (to the kernel) for the soft limit to be increased to 4096.

In order to read hardware counters, tiptop opens five counters per process in its default con-
figuration. For each combination of process and hardware counter, a file descriptor is opened. As
we can can see in the screenshot for Figure 5, my desktop had 332 running processes. Hence,

6https://lkml.org/lkml/2010/11/1/131
7http://www.google.come/chrome

7



we now have a problem. We have 332 processes, five hardware counters per process, so we have
exceeded our soft limit for the number of file handlers open by requesting to open 332 · 5 = 1660
file descriptors.

As a stopgap solution to this problem, we explicitly request for our soft file descriptor limit
to be increased to the hard limit. This may be performed by fetching the hard limit from
/proc/N/limits, then making a call to the setrlimit function, which is provided by sys/resource.h.
Unfortunately, increasing the open file descriptor limit beyond the hard limit requires superuser
permission. Our solution, raising the soft limit to the hard limit, is consistent with other open
source project that have encountered this issue, such as Wine8. A more robust solution for this
bug is an open problem and would require fundamental changes to the design of tiptop, we talk
about possible solutions in section 4.

The testing for this was not straightforward due to a different bug, which we will discuss next.
In order to verify our fix for this bug we ran tiptop as root, with root having a hard number of file
descriptor set to 4096 and soft set to 1024. (By default, root has a soft limit of 4096 and hard limit
of 8192 on Ubuntu 12.04.) We may then run the version of tiptop that uses the soft limit and we
get the following output.

19884+ 4.6 0.0 0 ? ? ? ? ? ? chrome

...

19818+ 0.5 0.5 0 ? ? ? ? ? ? firefox

Simultaneously, we run the enhanced version of tiptop that explicitly requests a file descriptor
limit to be raised to the hard limit, and we get the following output.

19884+ 4.3 0.0 0 19327.35 19327.35 1.00 0.00 0.00 0.0 chrome

...

19818+ 0.5 0.5 0 8589.93 8589.93 1.00 0.00 0.00 0.0 firefox

We verify by that this bug is solved by checking that no value in the tiptop output has a
question mark. A more robust testing strategy will require an enhanced error reporting layer for
tiptop, which distinguishes between different types of hardware counter read failures. However, an
enhanced error reporting layer is beyond the scope of this project.

Bug 2: EACCES, permission denied. A second cause of “questions marks” in the tiptop output
has been traced to an EACCES permission denied error returned by the kernel, and is isolated to only
a few applications, such as Chrome and the gnome-keyring-daemon, to name a few. This condition
only occurs when running tiptop as a regular user. We contacted the lead developer of tiptop,
Erven Rohou, in order to determine the cause of this problem. This was an unknown bug, but it
can be avoided by running tiptop as root. Unfortunately, we have no further progress towards a
solution to this bug.

4 Future Work

Tiptop is a useful application, and our extensions further enhance its utility. However, aside from
the unresolved bug, there are four major points that require further investigation.

First, our solution to the “Too many open file descriptors bug” is unfortunately not comprehen-
sive. On systems that have more than 819 processes and a hard file descriptor limit of 4096, this

8https://bugs.launchpad.net/ubuntu/+source/linux/+bug/663090

8



will still be an issue. We do not believe that it is reasonable to require superuser permissions to
solve this problem. Therefore, as one solution, it may be possible to develop a heuristic algorithm
that only opens a file descriptor for processes of interest. As an example the algorithm can create
a hardware counter (i.e., open a file descriptor) for any process that has used the CPU in the last
N seconds. Of course, this will require process monitoring that does not use hardware performance
counters. However, we believe that the overhead of such a strategy is justified, in order to minimize
the probability of this bug occurring.

Second, we found that tiptop is not well-supported in virtualized environments. The man page
briefly mentions this, but does not elaborate further. Our testing confirms that data is often
omitted or not reported correctly in VM instances. We believe this requires further investigation to
understand why this is the case. Certainly, for testing purposes, the ability to test tiptop without
requiring physical hardware would greatly increase the ability to verify that features are correctly
implemented across CPU architectures.

Third, further investigation is require to understand if tiptop needs superuser access.
Finally, our integration with PAPI opens tiptop to a much wider range of architectures and

kernel versions. The tiptop application would benefit from a more robust testing framework that
is able to validate the correctness of performance counter. As an example, it may be possible to
create low-level assembly programs that execute a deterministic number of instructions. Then, this
testing framework should be deployed and executed on a wide variety of configurations, in order to
test the extensibility of tiptop.

References

[1] Kernighan, B. W. The C Programming Language, 2nd ed. Prentice Hall Professional Tech-
nical Reference, 1988.

[2] Mucci, P. J., Browne, S., Deane, C., and Ho, G. Papi: A portable interface to hardware
performance counters. In In Proceedings of the Department of Defense HPCMP Users Group
Conference (1999), pp. 7–10.

[3] Rohou, E. Tiptop: Hardware Performance Counters for the Masses. Rapport de recherche
RR-7789, INRIA, Nov. 2011.

[4] Weaver, V., and McKee, S. Can hardware performance counters be trusted? In Workload
Characterization, 2008. IISWC 2008. IEEE International Symposium on (sept. 2008), pp. 141
–150.

9


