
Programming with cURLpp

Jean-Philippe Barrette-LaPierre

January 25, 2006

1 About this Document

This document attempts to describe the general principles and some basic
approaches to consider when programming with cURLpp. Don’t forget that
cURLpp is a C++wrapper of libcurl, so cURLpp needs libcurl to be installed
already.

This document will refer to ’the user’ as the person writing the source
code that uses cURLpp. That would probably be you or someone in a similar
position. What will be generally refered to as ’the program’ will be the
collective source code that you write and that is using cURLpp for transfers.
The program is outside cURLpp and cURLpp is outside of the program.

To get more details on all options and functions described herein, please
refer to their respective man pages. You should always have in mind that this
is a C++wrapper of libcurl. It would be unproductive to duplicate libcurl’s
documentation here, so this document will show you how to interact with
cURLpp, but you should read the libcurl programming tutorial, which this
document is strongly inspired from, and the libcurl man pages.

2 Building

There are many different ways to build C++ programs. This chapter will
assume a unix-style build process. If you use a different build system, you can
still read this to get general information that may apply to your environment
as well. Note that cURLpp need libcurl to be already installed.

1

2.1 Compiling the Program

Your compiler needs to know where cURLpp’s and libcurl’s headers are lo-
cated. Therefore you must set your compiler’s include path to point to the
directory where you installed them. The ’curlpp-config’1 tool can be used to
get this information:

curlpp-config --cflags

If pkg-config is installed, you can use it this way:

pkg-config --cflags curlpp

But, if you’re using autoconf for your project you can use pkg-config

macros. See pkg-config man pages for more details.

2.2 Linking the Program with cURLpp

When having compiled the program, you need to link your object files to
create a single executable. For that to succeed, you need to link with cURLpp
and possibly also with other libraries that cURLpp itself depends on (such
as libcurl). This may include OpenSSL libraries and even some standard OS
libraries may be needed on the command line. To figure out which flags to
use, the ’curlpp-config’ tool comes to the rescue once again:

curlpp-config --libs

Again, if pkg-config is installed, you can use it this way:

pkg-config --libs curlpp

1The curlpp-config tool, which wraps all functions of curl-config, is generated at build-
time (on unix-like systems) and should be installed with the ’make install’ or similar
instruction that installs the library, header files, man pages etc.

2

2.3 SSL or Not

cURLpp, like libcurl, can be built and customized in many ways. One of
the things that varies between different libraries and builds is the support
for SSL-based transfers, like HTTPS and FTPS. If OpenSSL was detected
properly by libcurl at build-time, cURLpp will be built with SSL support. To
figure out if an installed cURLpp has been built with SSL support enabled,
use ’curlpp-config’ like this:

curlpp-config --feature

If SSL is supported, the keyword ’SSL’ will be written to stdout, possi-
bly together with a few other features that can be on and off on different
cURLpps.

2.4 Portable Code in a Portable World

The people behind libcurl have put a considerable effort to make libcurl work
on a large number of different operating systems and environments.

You program cURLpp the same way on all platforms that cURLpp runs
on. There are only very few minor considerations that differ. If you make sure
just to write your code portably enough, you may very well create yourself a
very portable program. cURLpp shouldn’t stop you from that.

3 Global Preparation

The program must initialize some of the cURLpp functionality globally. That
means it should be done exactly once, no matter how many times you intend
to use the library. Once for your program’s entire lifetime. This is done using

cURLpp::initialize(long flags = cURLpp::CURL_GLOBAL_ALL)

and it takes one parameter which is a bit pattern that tells cURLpp what
to intialize. Check the man page of curl_global_init for more details on
flags.

When the program no longer uses cURLpp, it should call cURLpp::terminate(),
which is the opposite of the init call. It will then do the operations needed
to cleanup the resources that the cURLpp::initialize() call initialized.

3

Repeated calls to cURLpp::initialize() and cURLpp::terminate()

must not be made. They must only be called once each. The cURLpp::Cleanup
class can be used to do this. It will call the cURLpp::initialize() func-
tion in its constructor and cURLpp::terminate() in its destructor. Check
example01.cpp in the examples/ directory of the source distribution for an
example.

4 Handle the Easy cURLpp

To use the easy interface, you must first create yourself an easy handle. You
need one handle for each easy session you want to perform. Basically, you
should use one handle for every thread you plan to use for transferring. You
must never share the same handle in multiple threads.

Get an easy handle with

cURLpp::Easy easyhandle;

This creates an easy handle. Using that you proceed to the next step:
setting up your preferred actions. A handle is just a logic entity for the
upcoming transfer or series of transfers. You can use it to do HTTP or FTP
requests.

You set properties and options for this handle using cURLpp::Options,
or cURLpp::OptionList classes; we will discuss cURLpp::OptionList later.
They control how the subsequent transfer or transfers will be made. Options
remain set in the handle until set again to something different. Alas, multiple
requests using the same handle will use the same options.

Many of the informationals you set in cURLpp are C++standard library
strings. Keep in mind that when you set strings with member functions,
cURLpp will copy the data. It will not merely point to the data. You don’t
need to make sure that the data remains available for cURLpp.

One of the most basic properties to set in the handle is the URL. You set
your preferred URL to transfer with a void cURLpp::Options::Url(const char *link)

option class, in a manner similar to:

easyhandle.setOpt(cURLpp::Options::Url("http://example.com/"));

There are of course many more options you can set, and we’ll get back to
a few of them later. Let’s instead continue to the actual transfer:

4

easyhandle.perform();

The cURLpp::Easy::perform() will connect to the remote site, do the
necessary commands and receive the transfer. Whenever it receives data, it
calls the trait function we previously set. The function may get one byte at
a time, or it may get many kilobytes at once. cURLpp delivers as much as
possible as often as possible. Your trait function should return the number
of bytes it ”took care of”. If that is not the exact same amount of bytes that
was passed to it, cURLpp will abort the operation and throw an exception.

When the transfer is complete, the function throws a cURLpp::Exception

if it doesn’t succeed in its mission. the const char *cURLpp::Exception::what()

will return the human readable reason of failure.

5 Wrapping libcurl

As previously said, cURLpp is just a C++libcurl wrapper. It wouldn’t be a
good idea to reproduce here, in this project, all the libcurl documentation.
This means that when you will be programming with cURLpp, you will refer
more to libcurl’s documentation than to cURLpp’s. We will explain here how
cURLpp wraps libcurl, so you will able to use it, without constantly refering
to its manual.

First, you must know that there are two main things that constitute
cURLpp: There are its options value setting/retrieving behavior and its util-
ities that helps you to use libcurl’s options more easily.

5.1 Option setting/retrieving

The main feature of cURLpp is that you can retrieve options previously set
on handles. cURLpp gives you the opportunity to retrieve options values
that were previously set on a specific handle and then use them again for
other handles. But first, let’s show you how to set an option on a handle, in
comparison to libcurl’s way of setting an option.

libcurl sets options on handles with this function:

curl_easy_setopt(CURL *handle, CURLoption option, parameter)

Here’s a part of the documentation taken from the man pages:

5

curl_easy_setopt() is used to tell libcurl how to behave. By
using the appropriate options to curl_easy_setopt(), you can
change libcurl’s behavior. All options are set with the option fol-
lowed by a parameter. That parameter can be a long, a function
pointer or an object pointer, all depending on what the specific
option expects.

Lets code a simple example:

CURL *handle = curl_easy_init();

if(handle == NULL) {

//something went wrong.

}

CURLcode code = curl_easy_setopt(handle,

CURLOPT_URL, ‘‘http://www.example.com’’);

if(code != CURLE_OK) {

//something went wrong

}

The code below does the same thing but with cURLpp:

cURLpp::Easy handle;

handle.setOpt(cURLpp::Options::Url(‘‘http://www.example.com’’);

If a problem occur, cURLpp will throw an exception, for more detail on
this subject, see the next section named Exception issues. As you see, the
equivalent of the curl_easy_setopt function is the cURLpp::Easy::setOpt
member function.

5.1.1 cURLpp::Options

The question that you might ask you at this moment is: “what exactly is
the cURLpp::Options::Url class mentioned in the previous example?” In
fact, this class is used to store values of options, but also to retrieve them,
as shown below:

cURLpp::Easy handle;

handle.setOpt(cURLpp::Options::Url(‘‘http://www.example.com’’);

6

cURLpp::Options::Url myUrl;

handle.getOpt(myUrl);

std::cout << myUrl.getValue() << std::endl;

This piece of code should print the URL on the standard output. Here’s
the code of the examples/example01.cpp file.

#include <string>

#include <iostream>

#include <curlpp/cURLpp.hpp>

#include <curlpp/Options.hpp>

#define MY_PORT 8080

/**

* This example is made to show you how you can use the Options.

*/

int main()

{

try

{

cURLpp::Cleanup myCleanup;

// Creation of the URL option.

cURLpp::Options::Url myUrl(

std::string("http://example.com"));

// Copy construct from the other URL.

cURLpp::Options::Url myUrl2(myUrl);

// Creation of the port option.

cURLpp::Options::Port myPort(MY_PORT);

// Creation of the request.

cURLpp::Easy myRequest;

7

// Creation of an option that contain a copy

// of the URL option.

cURLpp::OptionBase *mytest = myUrl.clone();

myRequest.setOpt(*mytest);

// You can reuse the base option for other type of option

// and set the option to the request. but first, don’t forget

// to delete the previous memory. You can delete it since the

// option is internally duplicated for the request.

delete mytest;

mytest = myPort.clone();

myRequest.setOpt(*mytest);

delete mytest;

// You can clone an option directly to the same type of

// option.

cURLpp::Options::Url *myUrl3 = myUrl.clone();

myRequest.setOpt(myUrl3);

// Now myUrl3 is owned by the request we will NOT use

// it anymore.

// You don’t need to declare an option if you just want

// to use it once.

myRequest.setOpt(cURLpp::Options::Url("example.com"));

// Note that the previous line wasn’t really efficient

// because we create the option, this option is duplicated

// for the request and then the option destructor is called.

// You can use this instead:

myRequest.setOpt(new cURLpp::Options::Url("example.com"));

// Note that with this the request will use directly this

// instance we just created. Be aware that if you pass an

// Option pointer to the setOpt function, it will consider

// the instance has its own instance. The Option instance

// will be deleted when the request will be deleted, so

8

// don’t use the instance further in your code.

// Doing the previous line is efficient as this:

myRequest.setOpt(myUrl.clone());

// You can retrieve the value of a specific option.

std::cout << myUrl2.getValue() << std::endl;

// You can see what are the options set for a request

// with this function. This function will print the option

// to the stdout.

myRequest.print();

// Perform the transaction with the options set.

myRequest.perform();

}

catch(cURLpp::RuntimeError &e)

{

std::cout << e.what() << std::endl;

}

catch(cURLpp::LogicError &e)

{

std::cout << e.what() << std::endl;

}

return 0;

}

5.2 cURLpp::Option types

This section will explain the use of the types that we use for some options
that differ from types that libcurl uses for the same option.

9

5.2.1 The bool type

A true value is binded to a non-zero long value, a false value is binded to a
zero long value.

5.2.2 The std::string type

The std::string::c_str() function is passed to libcurl.

5.2.3 The std::list template of std::string type

This type is used when libcurl’s option need a curl_slist. Instead of us-
ing this homemade struct, cURLpp allow you to use a known type, the
std::list. cURLpp this transform internally the std::list to a curl_slist.

5.3 cURLpp::Options

This section just list how each libcurl’s option is binded by cURLpp. Some
options might not be there, if it’s the case and you want to use them, see the
“how to enhance cURLpp” section.

5.3.1 Behavior options

typedef cURLpp::OptionTrait< bool,

CURLOPT_VERBOSE > Verbose;

typedef cURLpp::OptionTrait< bool,

CURLOPT_HEADER > Header;

typedef cURLpp::OptionTrait< bool,

CURLOPT_NOSIGNAL > NoSignal;

typedef cURLpp::OptionTrait< bool,

CURLOPT_NOPROGRESS > NoProgress;

5.3.2 Callback options

typedef cURLpp::OptionTrait< cURL::curl_write_callback,

CURLOPT_WRITEFUNCTION > WriteFunction;

typedef cURLpp::OptionTrait< void *,

CURLOPT_WRITEDATA > WriteData;

typedef cURLpp::OptionTrait< cURL::curl_read_callback,

10

CURLOPT_READFUNCTION > ReadFunction;

typedef cURLpp::OptionTrait< void *,

CURLOPT_READDATA > ReadData;

typedef cURLpp::OptionTrait< cURL::curl_progress_callback,

CURLOPT_PROGRESSFUNCTION > ProgressFunction;

typedef cURLpp::OptionTrait< void *,

CURLOPT_PROGRESSDATA > ProgressData;

typedef cURLpp::OptionTrait< cURL::curl_write_callback,

CURLOPT_HEADERFUNCTION > HeaderFunction;

typedef cURLpp::OptionTrait< void *,

CURLOPT_HEADERDATA > HeaderData;

typedef cURLpp::OptionTrait< cURL::curl_debug_callback,

CURLOPT_DEBUGFUNCTION > DebugFunction;

typedef cURLpp::OptionTrait< void *,

CURLOPT_DEBUGDATA > DebugData;

#ifdef CURLOPT_SSL_CTX_FUNCTION

typedef cURLpp::OptionTrait< cURL::curl_ssl_ctx_callback,

CURLOPT_SSL_CTX_FUNCTION > SslCtxFunction;

typedef cURLpp::OptionTrait< void *,

cURL::CURLOPT_SSL_CTX_DATA > SslCtxData;

#endif

5.3.3 Error options

typedef cURLpp::OptionTrait< char *,

cURL::CURLOPT_ERRORBUFFER > ErrorBuffer;

typedef cURLpp::OptionTrait< FILE *,

cURL::CURLOPT_STDERR > StdErr;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FAILONERROR > FailOnError;

5.3.4 Network options

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_URL > Url;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_PROXY > Proxy;

typedef cURLpp::OptionTrait< long,

11

cURL::CURLOPT_PROXYPORT > ProxyPort;

typedef cURLpp::OptionTrait< curl_proxytype,

cURL::CURLOPT_PROXYTYPE > ProxyType;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_HTTPPROXYTUNNEL > HttpProxyTunnel;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_INTERFACE > Interface;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_DNS_CACHE_TIMEOUT > DnsCacheTimeout;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_DNS_USE_GLOBAL_CACHE > DnsUseGlobalCache;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_BUFFERSIZE > BufferSize;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_PORT > Port;

#ifdef cURL::CURLOPT_TCP_NODELAY

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_TCP_NODELAY > TcpNoDelay;

#endif

5.3.5 Names and passwords options

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_NETRC > Netrc;

#ifdef cURL::CURLOPT_NETRC_FILE

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_NETRC_FILE > NetrcFile;

#endif

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_USERPWD > UserPwd;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_PROXYUSERPWD > ProxyUserPwd;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_HTTPAUTH > HttpAuth;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_PROXYAUTH > ProxyAuth;

12

5.3.6 HTTP options

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_AUTOREFERER > AutoReferer;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_ENCODING > Encoding;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FOLLOWLOCATION > FollowLocation;

#ifdef cURL::CURLOPT_UNRESTRICTED_AUTH

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_UNRESTRICTED_AUTH > UnrestrictedAuth;

#endif

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_MAXREDIRS > MaxRedirs;

#ifndef cURL::CURLOPT_UPLOAD

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_PUT > Put;

#else

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_UPLOAD > Put;

#endif

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_POST > Post;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_POSTFIELDS > PostFields;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_POSTFIELDSIZE > PostFieldSize;

#ifdef cURL::CURLOPT_POSTFIELDSIZE_LARGE

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_POSTFIELDSIZE_LARGE > PostFieldSizeLarge;

#endif

typedef cURLpp::OptionTrait< struct cURLpp::cURL::HttpPost *,

cURL::CURLOPT_HTTPPOST > HttpPost;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_REFERER > Referer;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_USERAGENT > UserAgent;

typedef cURLpp::OptionTrait< std::list< std::string >,

13

cURL::CURLOPT_HTTPHEADER > HttpHeader;

typedef cURLpp::OptionTrait< std::list< std::string >,

cURL::CURLOPT_HTTP200ALIASES > Http200Aliases;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_COOKIE > Cookie;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_COOKIEFILE > CookieFile;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_COOKIEJAR > CookieJar;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_COOKIESESSION > CookieSession;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_HTTPGET > HttpGet;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_HTTP_VERSION > HttpVersion;

5.3.7 FTP options

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_FTPPORT > FtpPort;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_QUOTE > Quote;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_POSTQUOTE > PostQuote;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_PREQUOTE > PreQuote;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FTPLISTONLY > FtpListOnly;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FTPAPPEND > FtpAppend;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FTP_USE_EPSV > FtpUseEpsv;

#ifdef cURL::CURLOPT_FTP_CREATE_MISSING_DIRS

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FTP_CREATE_MISSING_DIRS > FtpCreateMissingDirs;

#endif

#ifdef cURL::CURLOPT_FTP_RESPONSE_TIMEOUT

typedef cURLpp::OptionTrait< bool,

14

cURL::CURLOPT_FTP_RESPONSE_TIMEOUT > FtpResponseTimeout;

#endif

#ifdef cURL::CURLOPT_FTP_SSL

typedef cURLpp::OptionTrait< cURLpp::curl_ftpssl,

cURL::CURLOPT_FTP_SSL > FtpSsl;

#endif

#ifdef cURL::CURLOPT_FTP_AUTH

typedef cURLpp::OptionTrait< cURLpp::curl_ftpauth,

cURL::CURLOPT_FTP_AUTH > FtpAuth;

#endif

5.3.8 Protocol options

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_TRANSFERTEXT > TransferText;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_CRLF > Crlf;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_RANGE > Range;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_RESUME_FROM > ResumeFrom;

#ifdef cURL::CURLOPT_RESUME_FROM_LARGE

typedef cURLpp::OptionTrait< curl_off_t,

cURL::CURLOPT_RESUME_FROM_LARGE > ResumeFromLarge;

#endif

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_CUSTOMREQUEST > CustomRequest;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FILETIME > FileTime;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_NOBODY > NoBody;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_INFILESIZE > InfileSize;

#ifdef cURL::CURLOPT_INFILESIZE_LARGE

typedef cURLpp::OptionTrait< cURL::curl_off_t,

cURL::CURLOPT_INFILESIZE_LARGE > InfileSizeLarge;

#endif

#ifdef cURL::CURLOPT_UPLOAD

15

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_UPLOAD > Upload;

#else

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_PUT > Upload;

#endif

#ifdef cURL::CURLOPT_MAXFILESIZE

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_MAXFILESIZE > MaxFileSize;

#endif

#ifdef cURL::CURLOPT_MAXFILESIZE_LARGE

typedef cURLpp::OptionTrait< cURL::curl_off_t,

cURL::CURLOPT_MAXFILESIZE_LARGE > MaxFileSizeLarge;

#endif

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_TIMECONDITION > TimeCondition;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_TIMECONDITION > TimeValue;

5.3.9 Connection options

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_TIMEOUT > Timeout;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_LOW_SPEED_LIMIT > LowSpeedLimit;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_LOW_SPEED_TIME > LowSpeedTime;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_MAXCONNECTS > MaxConnects;

typedef cURLpp::OptionTrait< cURL::curl_closepolicy,

cURL::CURLOPT_CLOSEPOLICY > ClosePolicy;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FRESH_CONNECT > FreshConnect;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_FORBID_REUSE > ForbidReuse;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_CONNECTTIMEOUT > ConnectTimeout;

#ifdef cURL::CURLOPT_IPRESOLVE

16

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_IPRESOLVE > IpResolve;

#endif

5.3.10 SSL and security options

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSLCERT > SslCert;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSLCERTTYPE > SslCertType;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSLCERTPASSWD > SslCertPasswd;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSLKEY > SslKey;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSLKEYTYPE > SslKeyType;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSLKEYPASSWD > SslKeyPasswd;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSLENGINE > SslEngine;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_SSLVERSION > SslVersion;

typedef cURLpp::OptionTrait< bool,

cURL::CURLOPT_SSL_VERIFYPEER > SslVerifyPeer;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_CAINFO > CaInfo;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_CAPATH > CaPath;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_RANDOM_FILE > RandomFile;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_EGDSOCKET > EgdSocket;

typedef cURLpp::OptionTrait< long,

cURL::CURLOPT_SSL_VERIFYHOST > SslVerifyHost;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_SSL_CIPHER_LIST > SslCipherList;

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_KRB4LEVEL > Krb4Level;

17

5.3.11 Others options

typedef cURLpp::OptionTrait< std::string,

cURL::CURLOPT_KRB4LEVEL > Krb4Level;

6 How the enhance cURLpp

Need to be written.

7 Exceptions issues

As previously said, cURLpp (libcurl in fact) offer the possibility to reimple-
ment the data writing/reading functions. Those functions called from within
libcurl might raise exceptions. Raising an exception in C code might cause
problems. cURLpp protect you from doing so2. All exceptions are caught by
cURLpp before they could cause damage to libcurl. If you want to raise an
exception within traits, you need to do this:

cURLpp::raiseException(MyException(‘‘Exception Raised’’);

Then, the cURLpp::Easy::perform() will raise your exception at the
end of the process. If an exception is raised but not by this mechanism, a
cURLpp::UnknownExceptionError will be raised.

2This feature will be added only in the 0.6.0 version

18

