

Published as Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop,

Sydney, November 2013 https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Also see Oliver, J., Forman, S., and Cheng, C.: Using Randomization to Attack Similarity Digests. ATIS 2014, Nov, 2014, pages 199-210.

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

TLSH - A Locality Sensitive Hash

Jonathan Oliver, Chun Cheng and Yanggui Chen

Trend Micro

North Ryde, NSW, 2113, Australia

jon_oliver@trendmicro.com

Abstract—Cryptographic hashes such as MD5 and SHA-1 are

used for many data mining and security applications – they are

used as an identifier for files and documents. However, if a single

byte of a file is changed, then cryptographic hashes result in a

completely different hash value. It would be very useful to work

with hashes which identify that files were similar based on their

hash values. The security field has proposed similarity digests,

and the data mining community has proposed locality sensitive

hashes. Some proposals include the Nilsimsa hash (a locality

sensitive hash), Ssdeep and Sdhash (both Ssdeep and Sdhash are

similarity digests). Here, we describe a new locality sensitive

hashing scheme the TLSH. We provide algorithms for evaluating

and comparing hash values and provide a reference to its open

source code. We do an empirical evaluation of publically

available similarity digest schemes. The empirical evaluation

highlights significant problems with previously proposed

schemes; the TLSH scheme does not suffer from the flaws

identified.

Keywords—locality sensitive hash; fuzzy hashing; data

fingerprinting; similarity digests; Ssdeep; Sdhash; Nilsimsa; TLSH.

I. INTRODUCTION

There are many problems in data mining where identifying
near duplicates and similar files is useful. This is especially
true in the area of computer security where it is required to
identify malware samples with similar binary file structure,
identify variants of spam email, etc. In some of these problems,
files or information is modified by accident, for example file
corruption. In many applications, the file is deliberately
changed by an adversary. For example, in spam outbreaks,
spammers will go to significant effort to make sure that each
spam email is unique - to avoid being matched to other spam
emails by the use of cryptographic hash functions.

Similarity digests [2, 3, 5] are an approach to solving these

problems. Similarity digests attempt to solve a nearest

neighbour problem using a digest that is superficially similar

to a cryptographic hash. Approaches to this include schemes

based on feature extraction [5], Locality Sensitive Hashing

(LSH) schemes [2, 10] and Context Triggered Piecewise

Hashing (CTPH) schemes [3]. All these similarity digest

schemes have the property that a small change to the file being

hashed results in a small change to the hash. In this paper, we

restrict the schemes we consider to those where the digest can

be encoded as a digest and stored in a central repository. The

bit sampling approaches [2, 10] are amenable to the creation

of digests. For example, the random projection methods that

approximate the cosine distance between two feature vectors

[7] are less amenable to the creation of digests. For the

methods which allow the creation of digests, the similarity

between two files can be measured by comparing the digests

of the documents under consideration.

These schemes have been released as open source code:

Ssdeep [3], Sdhash [5] and Nilsimsa [2, 10]. In the area of

malware analysis, the de facto standard is the Ssdeep hash [8].

For example, NIST supports Ssdeep [11] and Ssdeep is

currently the only similarity digest supported by Virus-Total

[13].

The Ssdeep scheme [3, 1] is a CTPH which segments the

file, evaluates a 6 bit hash value for each segment. Ssdeep

calculates the edit distance between digests as the similarity

measure. Sdhash [5, 6] creates a similarity digest by

identifying features with low empirical probability, hashing

these features into a bloom filter, and encoding the bloom

filter as the output digest. Sdhash uses a similarity score by

calculating a normalized entropy measure between the two

digests. The Sdhash scheme is close in spirit to a random

projection method of LSH schemes where the distance

between two feature vectors is the cosine distance between the

feature vectors. The Nilsimsa scheme [2, 10] is a bit sampling

LSH which uses the hamming distance between the digests as

the similarity measure.

Previously, limitations of Ssdeep for practical applications

have been raised [1, 6]. Roussev concludes that Sdhash

consistently outperforms Ssdeep for the experiments

performed [6].
This paper is organized as follows. Sections 2 and 3 give

details of the TLSH scheme, including details on construction
of TLSH digests and scoring the distance between two digests.
Section 4 gives an empirical comparison of the TLSH scheme
with the Ssdeep and Sdhash schemes. This evaluation confirms
the limitations which were raised in [1, 6], and identifies
limitations of the Sdhash method which have not been
previously identified.

II. CONSTRUCTION OF THE TLSH DIGEST

In this section, we describe how to construct a TLSH value
from a byte string. The various parameters and choices that
were made are justified in Section 2(F). Source code which
implements the algorithms described here has been released as
open source code [12].

We consider a byte string of length len:
 Byte[0], Byte[1], Byte[2] … Byte[len-1]

Published as Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop,

Sydney, November 2013 https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Also see Oliver, J., Forman, S., and Cheng, C.: Using Randomization to Attack Similarity Digests. ATIS 2014, Nov, 2014, pages 199-210.

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

initialize the array bucket to 0

For ew = 4 to len-1 {

// sw is the start of the window

sw = ew - 4

For tri = 1 to 6 {

 (c1,c2,c3)=Triplet(tri,Byte[sw..ew])

 bi = b_mapping(c1, c2, c3)

 bucket[bi] ++

}

}

The TLSH digest of the byte string is evaluated as the
following steps

1. Process the byte string using a sliding window of size 5

to populate an array of bucket counts

2. Calculate the quartile points, q1, q2 and q3

3. Construct the digest header values

4. Construct the digest body by processing the bucket

array

Steps 1, 2 and 4 combine to use a modified bit sampling

method; instead of bit sampling these steps are sampling pairs
of bits. The sampling process is done to a finite precision so as
to have a fixed length digest. Step 3 constructs innovative
features based on the approach used to get a fixed length
digest.

A. Step 1. Process the byte string with a sliding window

The byte string is processed using a sliding window of size
5 to populate an array of bucket counts using the following
process:

B. Step 2. Calculate the quartile points

After step 1 has been performed we have an array of bucket
counts. We calculate the quartiles of this array such that:

75% of the bucket counts are >= q1

50% of the bucket counts are >= q2

25% of the bucket counts are >= q3

C. Step 3. Construct the digest header

The first 3 bytes of the hash are a header. The first byte is a
checksum (modulo 256) of the byte string. The second byte is a
representation of the logarithm of the byte string length
(modulo 256). The third byte is constructed out of two 16 bit
quantities derived from the quartiles: q1, q2 and q3:

q1_ratio = (q1*100/q3) MOD 16

q2_ratio = (q2*100/q3) MOD 16

D. Step 4. Construct the digest body

The remainder of the digest is constructed using the bucket
array using the following procedure:

For bi = 0 to 127 {

 if bucket[bi] <= q1 Emit(00)

 else if bucket[bi] <= q2 Emit(01)

 else if bucket[bi] <= q3 Emit(10)

 else Emit(11)

}

E. Putting the digest together

The final TLSH digest constructed from the Byte string is
the concatenation of:

 the hexadecimal representation of the digest header
values from step 3, and

 the hexadecimal representation of the binary string
from step 4.

F. Choices in the Construction Algorithm

A number of choices have been made in the algorithm used
to construct a digest from a byte string. We first list the
choices, and offer an explanation for each choice below:

 A sliding window of size 5.

 We choose to extract triplets from the sliding window,
and we selected 6 of the possible 10 triplets.

 The use of the Pearson hash as the bucket_mapping
function.

 The use of quartiles instead of average or median.

 The use of a checksum and a length factor in the
header.

 The form of the q_ratio parameters.

We selected a window size of 5 and to extract triplets from
the sliding window because it had previously been used in the
Nilsimsa hash, and it had proved effective.

We selected 6 triplets of the 10 possible triplets for the
following reason. There are 10 possible triplets of bytes from a
window of 5 bytes (A, B, C, D, E). The possible triplets are:

 1. A B C

 2. A B D

 3. A B E

 4. A C D

 5. A C E

 6. A D E

 7. B C D

 8. B C E

 9. B D E

 10. C D E

We excluded triplets 7 to 10 because they result in
duplicated counting of triplets; each triplet from 7 to 10 will be

Published as Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop,

Sydney, November 2013 https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Also see Oliver, J., Forman, S., and Cheng, C.: Using Randomization to Attack Similarity Digests. ATIS 2014, Nov, 2014, pages 199-210.

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

processed in a subsequent iteration of moving the sliding
window.

Implementation details: the source code that has been open
sourced reverses each window of characters before the 6
triplets are extracted and had the Pearson hash applied.

We selected the Pearson hash [4] as the bucket mapping
function because it has a long history, and is well respected.

We selected the quartile points rather than the average used
by the Nilsimsa hash for a similar purpose to make the scheme
work well on binary data such as binary files and on images.

We selected a 1 byte check sum for false positive
avoidance. Sometimes very similar long files (for example,
with only one byte difference) can get collisions and near
collisions using LSH techniques. In the open source software
[12], this option is configurable.

We selected a 1 byte length description so that we can
identify strings which have similar characteristics, but are very
different in size. In the open source software [12], this option is
configurable.

The q_ratio parameters were determined through
experimentation, and found to be useful.

III. SCORING THE DISTANCE BETWEEN TWO TLSH DIGESTS

The Ssdeep [3] and Sdhash [5] schemes provide a similarity
score between two digests which ranges from 0 to 100, where 0
is a mismatch and 100 is a perfect match (or a near perfect
match). The results in Section 4 highlight problems with the
approach; and therefore the TLSH scheme uses a distance
score. The TLSH scheme scores the distance between two
digests - a distance score of 0 represents that the files are
identical (or nearly identical) and scores above that represent
greater distance between the documents. A higher score should
represent that there are more differences between the
documents.

In this section, we describe how to score the distance
between two TLSH digests. Source code which implements
this functionality is included in the open source code [12].

We define the mod_diff(X, Y, R) which is the minimum
number of steps between X and Y on a circular queue of size
R:

mod_diff(X,Y,R) = MIN((X-Y) mod R, (Y-X) mod R)

For example, the mod_diff(15, 3, 16) = 4 because it requires 4
steps to go from position 15 to position 3 on a circular queue of
size 16. The steps are:

 15 → 0 → 1 → 2 → 3

We now calculate the distance score between two digests,
tX and tY. Each of these digests is a hexadecimal string, and
we can extract the checksum, the lvalue, the q1ratio, the q2ratio
from the first 6 hexadecimal digits. The distance score between
the tX and tY digests is defined as the sum of the distance of
the headers (as given by the distance_headers function
below) and the distance of the digest bodies (as given by the
distance_bodies function below).

Function distance_headers(tX, tY)

int diff=0

ldiff = mod_diff(tX.lvalue, tY.lvalue, 256);

If ldiff <= 1

 diff = diff + ldiff

else

 diff = diff + ldiff * 12;

q1diff = mod_diff(tX.q1ratio, tY.q1ratio, 16);

 If q1diff <= 1

 diff = diff + q1diff

 else

 diff = diff + (q1diff-1) * 12;

q2diff = mod_diff(tX.q2ratio, tY.q2ratio, 16);

 If q2diff <= 1

 diff = diff + q2diff

 else

 diff = diff + (q2diff-1) * 12;

If tX.checksum <> tY.checksum

 diff = diff + 1

return(diff)

Function distance_bodies(tX, tY)

int diff=0

For I = 1 to 64 {

 x1 = tX.hex[i+5] / 4

 x2 = tX.hex[i+5] % 4

 y1 = tY.hex[i+5] / 4

 y2 = tY.hex[i+5] % 4

 d1 = abs(x1 – y1)

 d2 = abs(x2 – y2)

 if (d1 == 3)

 diff = diff + 6

 else

 diff = diff + d1

 if (d2 == 3)

 diff = diff + 6

 else

 diff = diff + d2

}

return(diff)

Published as Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop,

Sydney, November 2013 https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Also see Oliver, J., Forman, S., and Cheng, C.: Using Randomization to Attack Similarity Digests. ATIS 2014, Nov, 2014, pages 199-210.

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

This distance calculated by the distance_bodies(tX, tY)

function is very similar to the methods used by previous LSH

methods that used a bit sampling method [10, 14]. The

function calculates an approximation to the hamming distance

between two digest bodies. The difference between the

method in the distance_bodies()and using the

hamming distance is the parameter 6 for the occasions when a

bucket count in the tX and tY are at the extreme points – that

is for one of the digests the bucket count was in the top

quartile, and the other digest was in the bottom quartile.

Without loss of generality, consider the situation of x1=0

and y1=3. We derive the parameter 6 by considering the

binomial situation when p=.25 and n=3. The probability of

getting an event is

Prob(k=3 | n=3; p=0.25) =(

)

 =0.0156

As noted in [2], the scoring of the hamming distance is

equivalent to the negative logarithm to base two of the

probability of the events.

 -log2(Prob(k=3 | n=3; p=0.25)) = 6

And hence the parameter in the distance_bodies()

function for the situation is 6.

The distance calculated by the distance_headers()

function also has a parameter. This time the range of the

binomial trials implied by the mod_diff() function is 16 for the

qratios and 256 for the length. It is not clear which distribution

these parameters will follow – it will depend on the security

application under consideration. We considered two

approaches for deciding the parameters to use in the

distance_header() function. The first approach was to

extend the binomial argument used above to the case of n=15

and p=1/16. This leads to a multiplier parameter of 3. The

second approach was to plot the relative occurrence of similar

files having different qratios and lvalues. Inspecting the plots

resulted in us selecting a multiplier parameter of 12. Ideally,

the multiplier parameter should be selected based on trials for

the data under consideration. For example executable files,

image files, text files and source code have a different

distribution for the qratios and the lvalues. Based on the

results in the next section, a choice of 12 for the multiplier

parameter is fairly robust. We also note that the open source

software [12] allows the user to select options such as turning

off any penalty for different lvalues.

The use of the checksum in the distance_headers()

function was to make sure that digests from near collisions

have a distance score greater than 0.
The computation of this score can be significantly sped up

by the use of pre-calculated tables, which is implemented in the
software [12].

IV. RESULTS

The TLSH scheme described has been implemented and
source code has been made available online [12]. Here we

present some comparisons with Ssdeep [3], Sdhash [5] and
Nilsimsa [10].

A. ROC Analysis

We collected a set of files that we knew were distinct: 109
binary malware files from different malware families, 290
randomly constructed HTML fragments, 100 pieces of random
text selected from the Unix dictionary (with no overlap) and 79
distinct text files about different topics.

We collected a set of files where we knew that the files are
similar. This set included 20 binary files from the
TROJ_DROPPER malware family, 20 binary files from the
TROJ_ZLOB malware family, 20 binary files from the
WORM_SOBER malware family. We took each of the 79
distinct text files and mutated it into 14 variations for a total of
15 similar files. Five of the 14 variations had a word selected
and globally replaced by another random word selected from
the text files. Three variations were created by using the Unix
fmt command changing the formatting of the text file to have a
width of 40, 60 and 80 characters. Five further variations were
created by reformatting the file, and then globally replacing a
random word with another random word selected from the text
files. One of the 14 variations was constructed by using the
Unix “sort --random-sort” to randomly sort the lines of the file.

The gold standard for this data set was a total of 8766
similar file comparisons and a total of 55822 different file
comparisons. Ssdeep, Sdhash, Nilsimsa and TLSH were used
to determine the similarity and distance scores for the
respective methods. Tables 1 and 2 give a range of thresholds
and the false positive rate and detection rate for each of the
schemes.

The size of the data sets is relatively modest because it was
important to check many of the pairs of files by hand; to ensure
that errors had not crept into the analysis.

TABLE I. FALSE POSITIVE AND DETECTION RATES FOR SDHASH AND

SSDEEP

Sdhash Ssdeep

Score FP rate
 Detect
rate Score FP rate

 Detect
rate

> 0 0.04711% 37.1% > 0 0.09966% 31.2%

> 5 0.02718% 36.6% > 5 0.09785% 31.2%

> 10 0.02174% 36.1% > 10 0.09603% 31.2%

> 20 0.01812% 35.4% > 20 0.09422% 31.2%

> 30 0.01268% 34.4% > 30 0.05617% 30.9%

> 40 0.00544% 32.7% > 40 0.01812% 29.3%

> 50 0.00362% 29.7% > 50 0.00362% 27.3%

> 60 0.00362% 26.0% > 60 0.00362% 25.9%

> 70 0.00181% 18.8% > 70 0.00181% 23.1%

> 80 0.00181% 12.4% > 80 0.00000% 16.2%

> 90 0.00181% 4.6% > 90 0.00000% 8.8%

> 99 0.00000% 1.0% > 99 0.00000% 3.5%

Published as Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop,

Sydney, November 2013 https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Also see Oliver, J., Forman, S., and Cheng, C.: Using Randomization to Attack Similarity Digests. ATIS 2014, Nov, 2014, pages 199-210.

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

TABLE II. FALSE POSITIVE AND DETECTION RATES FOR TLSH AND THE

NILSIMSA HASH

TLSH Nilsimsa

Score FP rate
 Detect
rate Score FP rate

 Detect
rate

< 300 79.30% 98.8% > 120 99.86% 100.0%

< 250 69.06% 98.8% > 130 99.20% 100.0%

< 200 50.10% 98.8% > 140 98.11% 100.0%

< 150 24.33% 98.1% > 150 96.98% 100.0%

< 100 6.43% 94.5% > 160 94.26% 100.0%

< 90 4.49% 92.3% > 170 89.52% 100.0%

< 80 2.93% 89.0% > 180 81.38% 100.0%

< 70 1.84% 83.6% > 190 69.69% 99.7%

< 60 1.09% 76.0% > 200 54.45% 98.8%

< 50 0.52% 65.3% > 210 36.73% 96.4%

< 40 0.07% 49.6% > 220 18.29% 91.9%

< 30 0.00181% 32.2% > 230 5.52% 72.0%

< 20 0.00181% 17.3% > 240 1.26% 35.2%

< 10 0.00181% 6.4% > 250 0.49% 9.5%

We note the following from the tables:

 The schemes have different scoring ranges. TLSH
distance scores go up to 300 (and can potentially
go up to over 1000). Sdhash and Ssdeep similarity
scores are restricted to the range 0-100.

 The Nilsimsa hash typically gives scores in the
range 128-256 – and rarely goes below 128. A

Nilsimsa score of 128 can be interpreted as
meaning the files are completely different, while a
score of 256 means the files are very similar.

 The Sdhash and Ssdeep schemes have very low
false positive rates for all sensible thresholds, but
have a significantly lower range for their detection
rate.

 The TLSH scheme has very low false positive
detection capabilities at thresholds <= 30 and very
high detection rates for thresholds closer to 100.
Of the four schemes, it is the only scheme which
allows for the user to select a threshold which
enables tradeoffs to be made between false
positive rates and detection rates.

 The Nilsimsa scheme has very strong capabilities
for detecting similar files, but suffers from
significantly higher false positive rates. We note
that the results of the Nilsimsa scheme are strictly
worse than the TLSH scheme – so we drop the
Nilsimsa scheme from further consideration.

We took the false positive and true positive rates for three
of the schemes and created a ROC curve (for clarity we have
removed the Nilsimsa scheme since it is not a competitive
scheme). Fig. 1 shows the ROC curve where the scoring
threshold was systematically varied to determine whether two
files were a match or not.

The ROC curve highlights a deficiency in the Sdhash and
Ssdeep schemes. Limiting the scoring to 0-100 has resulted in
schemes where there is no available threshold for many useful
cases.

Fig. 1. ROC Curve

Published as Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop,

Sydney, November 2013 https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Also see Oliver, J., Forman, S., and Cheng, C.: Using Randomization to Attack Similarity Digests. ATIS 2014, Nov, 2014, pages 199-210.

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

 For the Sdhash and Ssdeep schemes, this results in a ROC
curve which abruptly changes in nature once the threshold hits
the score of 1. It is not a sensible use of these schemes to use a
threshold of 0 – since that is equivalent to asserting that all files
are similar. From Table 1, we see that at a threshold of 1,
Sdhash has a false positive rate of 0.047% and a detection rate
of 37.1%. At a threshold of 0, Sdhash has a false positive rate
of 100% and a detection rate of 100%. There are no thresholds
available between these extremes. We have drawn in this point
on the ROC diagram so that we can calculate the ROC area.

The ROC area for each of the methods is shown in Table 3.
We list the areas under the curves as a standard part of a ROC
analysis, while noting that the areas for the Sdhash and Ssdeep
schemes were dominated by the limitation on thresholds noted
above.

TABLE III. AREA UNDER ROC CURVE

 TLSH Sdhash Ssdeep

Area under
ROC curve

0.9775 0.6855 0.6555

The value in doing the ROC analysis was twofold:

 It established that the various choices about the
algorithm and parameters made in Sections 2 and
3 created a robust scheme.

 It identified that using a scoring range of 0-100
created limitations for the Sdhash and Ssdeep
schemes.

B. Systematically Changing a File

We started with the first 500 lines of Pride and Prejudice
(pg1342.txt from [9]). We created 500 versions of this text,
each one more `different` from the original text than the
previous.

Fig. 2. The scores on mutations of the first 500 lines of Pride and Prejudice.

The changes we introduced were random, and consisted of
performing one of the following changes:

(i) inserting a new word,

(ii) deleting an existing word,

(iii) swapping two words,

(iv) substituting a word for another word,

(v) replacing 10 occurrences of a character for another
character, or

(vi) deleting 10 occurrences of a character.

The scores comparing the original text with the files generated
by this process for Ssdeep, Sdhash and TLSH are shown below
in Fig. 2.

We then applied the same approach to the entire text of
Pride and Prejudice (13426 lines containing 704,146 bytes).
We again iteratively applied changes. Due to the size of the
book, at each iteration we would do one of the following
transactions:

(A) apply 40 of the changes (i) - (vi) described above,

(B) swap two sections containing 5-25 lines, or

(C) delete 5-25 lines.

The scores comparing the original text with the files generated
by this process for Ssdeep, Sdhash and TLSH are shown below
in Fig. 3.

Fig. 3. The scores on mutations of entire text of Pride and Prejudice.

In both Fig. 2 and Fig. 3, the Ssdeep and Sdhash similarity
scores go down from 100 to 0, while the distance score for
TLSH grows. In both graphs, well after the Ssdeep and Sdhash
methods have scored the files as being distinct (a score of 0),
the TLSH method is giving distance scores which can be
interpreted as saying the files are `similar` (in the range of 10
to 40).

Alarmingly for the Ssdeep method, in Fig. 3, the Ssdeep
score immediately goes to zero after the 2

nd
 iteration of

changes to the text. At this point the Unix diff command can
determine that the files are very similar – only 153 changes
have occurred and the first change does not occur until line 44
out of 13426 lines.

A visual inspection of the files agrees with the TLSH
scores. After 150 iterations of the process, where both Sdhash

Published as Oliver, J., Cheng, C., Chen, Y.: TLSH - A Locality Sensitive Hash. 4th Cybercrime and Trustworthy Computing Workshop,

Sydney, November 2013 https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

Also see Oliver, J., Forman, S., and Cheng, C.: Using Randomization to Attack Similarity Digests. ATIS 2014, Nov, 2014, pages 199-210.

https://github.com/trendmicro/tlsh/blob/master/Attacking_LSH_and_Sim_Dig.pdf

and Ssdeep have failed to identify the files as being similar, a
human reader can still say with confidence that the text is the
start of Pride and Prejudice. The first paragraph of the 150th
iteration of this process is shown in Fig. 4.

PRIDE AND PREJUDICE

By Jane Austen

Chapter 1

It is a truth universally aiknowledged,
younarenangreatndealntoonapt,nyounknow, a single man in
possession of a good fortune, must be in want of a wife.

Fig. 4. The first paragraph of the 150th iteration of the mutation process.

C. Performance

We performed a comparison of the speed of the TLSH
code. Table 4 below shows the TLSH performance on Ubuntu
machine (Intel Pentium 4 CPU 3.40 GHz, 4G RAM) compared
to MD5, SHA-1 and Ssdeep. The input data length is 4096
bytes, and the times were averaged over 10,000 computations
of the hash.

TABLE IV. AVERAGE SPEED FOR CALCULATING THE DIGESTS

Method Average Time (microsecond)

TLSH 286

MD5 38

SHA1 53

Ssdeep 265

The speed of TLSH is about the same as Ssdeep.

V. CONCLUSION

This paper has described the TLSH approach based on
Locality Sensitive Hashing for implementing similarity digests.
The approach described here has been released as open source
code [12].

The ROC analysis highlighted a significant problem with
the range of values which the Sdhash and Ssdeep similarity
score can take. Restricting this to a range of 0-100 limits the
usefulness of the schemes.

The TLSH scheme described has outperformed available
digest methods for identifying similar documents, especially
for applications where missed detections are of concern and
false alarms are acceptable. The TLSH method shows distinct
advantages in the nature of its ROC curve, and therefore has a
wider range of computer security applications. The empirical
evaluation highlights significant problems with previously
proposed schemes.

REFERENCES

[1] F. Breitinger, "Sicherheitsaspekte von fuzzy-hashing". Master's thesis.

Hochschule Darmstadt, 2011.

[2] E. Damianil, S. De Capitani di Vimercati1, S. Paraboschi2, and P.
Samarati, "An Open Digest-based Technique for Spam Detection" in
Proc. of the 2004 International Workshop on Security in Parallel and
Distributed Systems, San Francisco, 2004.

[3] J. Kornblum, "Identifying Almost Identical Files Using Context
Triggered Piecewise Hashing" in Proc. of the 6th Annual DFRWS,
2006, S91-S97. Elsevier.

[4] P.K. Pearson, "Fast Hashing of Variable-Length Text Strings,"
Communications of the ACM. 33, 1990, 677-680.

[5] V. Roussev, "Data Fingerprinting with Similarity Digests" in Research
Advances in Digital Forensics VI. 207-226. Chow, K.; Shenoi, S. (eds),
2010, Springer.

[6] V. Roussev, "An Evaluation of Forensics Similarity Hashes" in Proc. of
the 11th Annual DFRWS, S34-S41, 2011, Elsevier.

[7] R. Shinde, A. Goel, P. Gupta and D. Dutta, "Similarity search and
locality sensitive hashing using ternary content addressable memories"
in Proc of the 2010 International Conference on Management of Data,
June 06-10, 2010, Indianapolis.

[8] Cisco Blog:

 http://blogs.cisco.com/security/malware_validation_techniques/

[9] Gutenberg Project: http://www.gutenberg.org/

[10] Nilsimsa: http://ixazon.dynip.com/~cmeclax/nilsimsa.html

[11] NIST: http://www.nsrl.nist.gov/ssdeep.htm

[12] TLSH: https://github.com/trendmicro/tlsh/

[13] Virus Total: http://www.virustotal.org/

[14] Wikipedia LSH: http://en.wikipedia.org/wiki/Locality-sensitive_hashing

