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Abstract—Cryptographic hashes such as MD5 and SHA-1 are 

used for many data mining and security applications – they are 

used as an identifier for files and documents. However, if a single 

byte of a file is changed, then cryptographic hashes result in a 

completely different hash value.  It would be very useful to work 

with hashes which identify that files were similar based on their 

hash values. The security field has proposed similarity digests, 

and the data mining community has proposed locality sensitive 

hashes. Some proposals include the Nilsimsa hash (a locality 

sensitive hash), Ssdeep and Sdhash (both Ssdeep and Sdhash are 

similarity digests).  Here, we describe a new locality sensitive 

hashing scheme the TLSH. We provide algorithms for evaluating 

and comparing hash values and provide a reference to its open 

source code. We do an empirical evaluation of publically 

available similarity digest schemes. The empirical evaluation 

highlights significant problems with previously proposed 

schemes; the TLSH scheme does not suffer from the flaws 

identified. 

Keywords—locality sensitive hash; fuzzy hashing; data 

fingerprinting; similarity digests; Ssdeep; Sdhash; Nilsimsa; TLSH. 

I.  INTRODUCTION 

There are many problems in data mining where identifying 
near duplicates and similar files is useful.  This is especially 
true in the area of computer security where it is required to 
identify malware samples with similar binary file structure, 
identify variants of spam email, etc. In some of these problems, 
files or information is modified by accident, for example file 
corruption.  In many applications, the file is deliberately 
changed by an adversary.  For example, in spam outbreaks, 
spammers will go to significant effort to make sure that each 
spam email is unique - to avoid being matched to other spam 
emails by the use of cryptographic hash functions. 

Similarity digests [2, 3, 5] are an approach to solving these 

problems. Similarity digests attempt to solve a nearest 

neighbour problem using a digest that is superficially similar 

to a cryptographic hash. Approaches to this include schemes 

based on feature extraction [5], Locality Sensitive Hashing 

(LSH) schemes [2, 10] and Context Triggered Piecewise 

Hashing (CTPH) schemes [3]. All these similarity digest 

schemes have the property that a small change to the file being 

hashed results in a small change to the hash.  In this paper, we 

restrict the schemes we consider to those where the digest can 

be encoded as a digest and stored in a central repository. The 

bit sampling approaches [2, 10] are amenable to the creation 

of digests. For example, the random projection methods that 

approximate the cosine distance between two feature vectors 

[7] are less amenable to the creation of digests. For the 

methods which allow the creation of digests, the similarity 

between two files can be measured by comparing the digests 

of the documents under consideration. 

These schemes have been released as open source code: 

Ssdeep [3], Sdhash [5] and Nilsimsa [2, 10]. In the area of 

malware analysis, the de facto standard is the Ssdeep hash [8]. 

For example, NIST supports Ssdeep [11] and Ssdeep is 

currently the only similarity digest supported by Virus-Total 

[13]. 

The Ssdeep scheme [3, 1] is a CTPH which segments the 

file, evaluates a 6 bit hash value for each segment. Ssdeep 

calculates the edit distance between digests as the similarity 

measure. Sdhash [5, 6] creates a similarity digest by 

identifying features with low empirical probability, hashing 

these features into a bloom filter, and encoding the bloom 

filter as the output digest. Sdhash uses a similarity score by 

calculating a normalized entropy measure between the two 

digests. The Sdhash scheme is close in spirit to a random 

projection method of LSH schemes where the distance 

between two feature vectors is the cosine distance between the 

feature vectors. The Nilsimsa scheme [2, 10] is a bit sampling 

LSH which uses the hamming distance between the digests as 

the similarity measure. 

Previously, limitations of Ssdeep for practical applications 

have been raised [1, 6]. Roussev concludes that Sdhash 

consistently outperforms Ssdeep for the experiments 

performed [6]. 
This paper is organized as follows. Sections 2 and 3 give 

details of the TLSH scheme, including details on construction 
of TLSH digests and scoring the distance between two digests. 
Section 4 gives an empirical comparison of the TLSH scheme 
with the Ssdeep and Sdhash schemes. This evaluation confirms 
the limitations which were raised in [1, 6], and identifies 
limitations of the Sdhash method which have not been 
previously identified. 

II. CONSTRUCTION OF THE TLSH DIGEST 

In this section, we describe how to construct a TLSH value 
from a byte string. The various parameters and choices that 
were made are justified in Section 2(F). Source code which 
implements the algorithms described here has been released as 
open source code [12]. 

We consider a byte string of length len: 
 Byte[0], Byte[1], Byte[2] … Byte[len-1] 
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initialize the array bucket to 0 

For ew = 4 to len-1 { 

// sw is the start of the window 

sw = ew - 4 

For tri = 1 to 6 { 

   (c1,c2,c3)=Triplet(tri,Byte[sw..ew]) 

   bi = b_mapping(c1, c2, c3) 

   bucket[ bi ] ++ 

} 

} 

The TLSH digest of the byte string is evaluated as the 
following steps 

1. Process the byte string using a sliding window of size 5 

to populate an array of bucket counts 

2. Calculate the quartile points, q1, q2 and q3 

3. Construct the digest header values 

4. Construct the digest body by processing the bucket 

array 

 
Steps 1, 2 and 4 combine to use a modified bit sampling 

method; instead of bit sampling these steps are sampling pairs 
of bits. The sampling process is done to a finite precision so as 
to have a fixed length digest. Step 3 constructs innovative 
features based on the approach used to get a fixed length 
digest. 

A. Step 1. Process the byte string with a sliding window 

The byte string is processed using a sliding window of size 
5 to populate an array of bucket counts using the following 
process: 

 

 

B. Step 2. Calculate the quartile points 

After step 1 has been performed we have an array of bucket 
counts. We calculate the quartiles of this array such that: 

75% of the bucket counts are >= q1 

50% of the bucket counts are >= q2 

25% of the bucket counts are >= q3 

C. Step 3. Construct the digest header 

The first 3 bytes of the hash are a header. The first byte is a 
checksum (modulo 256) of the byte string. The second byte is a 
representation of the logarithm of the byte string length 
(modulo 256). The third byte is constructed out of two 16 bit 
quantities derived from the quartiles: q1, q2 and q3: 

q1_ratio =  (q1*100/q3) MOD 16 

q2_ratio =  (q2*100/q3) MOD 16 

D. Step 4. Construct the digest body 

The remainder of the digest is constructed using the bucket 
array using the following procedure: 

For bi = 0 to 127 { 

    if bucket[bi] <= q1      Emit(00) 

    else if bucket[bi] <= q2 Emit(01) 

    else if bucket[bi] <= q3 Emit(10) 

    else                     Emit(11) 

} 

E. Putting the digest together 

The final TLSH digest constructed from the Byte string is 
the concatenation of: 

 the hexadecimal representation of the digest header 
values from step 3, and 

 the hexadecimal representation of the binary string 
from step 4. 

F. Choices in the Construction Algorithm 

A number of choices have been made in the algorithm used 
to construct a digest from a byte string. We first list the 
choices, and offer an explanation for each choice below: 

 A sliding window of size 5. 

 We choose to extract triplets from the sliding window, 
and we selected 6 of the possible 10 triplets. 

 The use of the Pearson hash as the bucket_mapping 
function. 

 The use of quartiles instead of average or median. 

 The use of a checksum and a length factor in the 
header. 

 The form of the q_ratio parameters. 

We selected a window size of 5 and to extract triplets from 
the sliding window because it had previously been used in the 
Nilsimsa hash, and it had proved effective. 

We selected 6 triplets of the 10 possible triplets for the 
following reason. There are 10 possible triplets of bytes from a 
window of 5 bytes (A, B, C, D, E). The possible triplets are: 

  1.  A B C 

  2.  A B   D 

  3.  A B     E 

  4.  A   C D 

  5.  A   C   E 

  6.  A     D E 

  7.    B C D 

  8.    B C   E 

  9.    B   D E 

  10.     C D E 

 

We excluded triplets 7 to 10 because they result in 
duplicated counting of triplets; each triplet from 7 to 10 will be 
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processed in a subsequent iteration of moving the sliding 
window. 

Implementation details: the source code that has been open 
sourced reverses each window of characters before the 6 
triplets are extracted and had the Pearson hash applied. 

We selected the Pearson hash [4] as the bucket mapping 
function because it has a long history, and is well respected. 

We selected the quartile points rather than the average used 
by the Nilsimsa hash for a similar purpose to make the scheme 
work well on binary data such as binary files and on images. 

We selected a 1 byte check sum for false positive 
avoidance. Sometimes very similar long files (for example, 
with only one byte difference) can get collisions and near 
collisions using LSH techniques. In the open source software 
[12], this option is configurable. 

We selected a 1 byte length description so that we can 
identify strings which have similar characteristics, but are very 
different in size. In the open source software [12], this option is 
configurable. 

The q_ratio parameters were determined through 
experimentation, and found to be useful. 

III. SCORING THE DISTANCE BETWEEN TWO TLSH DIGESTS 

The Ssdeep [3] and Sdhash [5] schemes provide a similarity 
score between two digests which ranges from 0 to 100, where 0 
is a mismatch and 100 is a perfect match (or a near perfect 
match). The results in Section 4 highlight problems with the 
approach; and therefore the TLSH scheme uses a distance 
score. The TLSH scheme scores the distance between two 
digests - a distance score of 0 represents that the files are 
identical (or nearly identical) and scores above that represent 
greater distance between the documents. A higher score should 
represent that there are more differences between the 
documents. 

In this section, we describe how to score the distance 
between two TLSH digests. Source code which implements 
this functionality is included in the open source code [12]. 

We define the mod_diff(X, Y, R) which is the minimum 
number of steps between X and Y on a circular queue of size 
R:  

mod_diff(X,Y,R) = MIN((X-Y) mod R, (Y-X) mod R) 

For example, the mod_diff(15, 3, 16) = 4 because it requires 4 
steps to go from position 15 to position 3 on a circular queue of 
size 16. The steps are: 

   15 → 0 → 1 → 2 → 3 

We now calculate the distance score between two digests, 
tX and tY. Each of these digests is a hexadecimal string, and 
we can extract the checksum, the lvalue, the q1ratio, the q2ratio 
from the first 6 hexadecimal digits. The distance score between 
the tX and tY digests is defined as the sum of the distance of 
the headers (as given by the distance_headers function 
below) and the distance of the digest bodies (as given by the 
distance_bodies function below). 

Function distance_headers(tX, tY) 

int diff=0 

ldiff = mod_diff(tX.lvalue, tY.lvalue, 256); 

If ldiff <= 1 

    diff = diff + ldiff 

else 

    diff =  diff + ldiff * 12; 

q1diff = mod_diff(tX.q1ratio, tY.q1ratio, 16); 

    If q1diff <= 1 

        diff = diff + q1diff 

    else 

        diff =  diff + (q1diff-1) * 12; 

q2diff = mod_diff(tX.q2ratio, tY.q2ratio, 16); 

    If q2diff <= 1 

        diff = diff + q2diff 

    else 

        diff =  diff + (q2diff-1) * 12; 

If tX.checksum <> tY.checksum 

       diff = diff + 1 

return(diff) 

 

 

Function distance_bodies(tX, tY) 

int diff=0 

For I = 1 to 64 { 

    x1 = tX.hex[i+5] / 4 

    x2 = tX.hex[i+5] % 4 

    y1 = tY.hex[i+5] / 4 

    y2 = tY.hex[i+5] % 4 

    d1 = abs(x1 – y1) 

    d2 = abs(x2 – y2) 

    if (d1 == 3) 

        diff = diff + 6 

    else 

        diff = diff + d1 

    if (d2 == 3) 

        diff = diff + 6 

    else 

        diff = diff + d2 

} 

return(diff) 
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This distance calculated by the distance_bodies(tX, tY) 

function is very similar to the methods used by previous LSH 

methods that used a bit sampling method [10, 14]. The 

function calculates an approximation to the hamming distance 

between two digest bodies. The difference between the 

method in the distance_bodies()and using the 

hamming distance is the parameter 6 for the occasions when a 

bucket count in the tX and tY are at the extreme points – that 

is for one of the digests the bucket count was in the top 

quartile, and the other digest was in the bottom quartile. 

Without loss of generality, consider the situation of x1=0 

and y1=3. We derive the parameter 6 by considering the 

binomial situation when p=.25 and n=3. The probability of 

getting an event is 

 

Prob(k=3 | n=3; p=0.25) =( 
 
)           

   

                =0.0156 

As noted in [2], the scoring of the hamming distance is 

equivalent to the negative logarithm to base two of the 

probability of the events. 

 

  -log2(Prob(k=3 | n=3; p=0.25)) = 6  

  

And hence the parameter in the distance_bodies() 

function for the situation is 6. 

The distance calculated by the distance_headers() 

function also has a parameter. This time the range of the 

binomial trials implied by the mod_diff() function is 16 for the 

qratios and 256 for the length. It is not clear which distribution 

these parameters will follow – it will depend on the security 

application under consideration. We considered two 

approaches for deciding the parameters to use in the 

distance_header() function. The first approach was to 

extend the binomial argument used above to the case of n=15 

and p=1/16. This leads to a multiplier parameter of 3. The 

second approach was to plot the relative occurrence of similar 

files having different qratios and lvalues. Inspecting the plots 

resulted in us selecting a multiplier parameter of 12. Ideally, 

the multiplier parameter should be selected based on trials for 

the data under consideration. For example executable files, 

image files, text files and source code have a different 

distribution for the qratios and the lvalues. Based on the 

results in the next section, a choice of 12 for the multiplier 

parameter is fairly robust. We also note that the open source 

software [12] allows the user to select options such as turning 

off any penalty for different lvalues. 

The use of the checksum in the distance_headers() 

function was to make sure that digests from near collisions 

have a distance score greater than 0. 
The computation of this score can be significantly sped up 

by the use of pre-calculated tables, which is implemented in the 
software [12]. 

IV. RESULTS 

The TLSH scheme described has been implemented and 
source code has been made available online [12].  Here we 

present some comparisons with Ssdeep [3], Sdhash [5] and 
Nilsimsa [10]. 

A. ROC Analysis 

We collected a set of files that we knew were distinct: 109 
binary malware files from different malware families, 290 
randomly constructed HTML fragments, 100 pieces of random 
text selected from the Unix dictionary (with no overlap) and 79 
distinct text files about different topics. 

We collected a set of files where we knew that the files are 
similar. This set included 20 binary files from the 
TROJ_DROPPER malware family, 20 binary files from the 
TROJ_ZLOB malware family, 20 binary files from the 
WORM_SOBER malware family. We took each of the 79 
distinct text files and mutated it into 14 variations for a total of 
15 similar files. Five of the 14 variations had a word selected 
and globally replaced by another random word selected from 
the text files. Three variations were created by using the Unix 
fmt command changing the formatting of the text file to have a 
width of 40, 60 and 80 characters. Five further variations were 
created by reformatting the file, and then globally replacing a 
random word with another random word selected from the text 
files. One of the 14 variations was constructed by using the 
Unix “sort --random-sort” to randomly sort the lines of the file. 

The gold standard for this data set was a total of 8766 
similar file comparisons and a total of 55822 different file 
comparisons. Ssdeep, Sdhash, Nilsimsa and TLSH were used 
to determine the similarity and distance scores for the 
respective methods. Tables 1 and 2 give a range of thresholds 
and the false positive rate and detection rate for each of the 
schemes. 

The size of the data sets is relatively modest because it was 
important to check many of the pairs of files by hand; to ensure 
that errors had not crept into the analysis. 

TABLE I.  FALSE POSITIVE AND DETECTION RATES FOR SDHASH AND 

SSDEEP 

Sdhash Ssdeep 

Score FP rate 
 Detect 
rate Score FP rate 

 Detect 
rate 

> 0 0.04711% 37.1% > 0 0.09966% 31.2% 

> 5 0.02718% 36.6% > 5 0.09785% 31.2% 

> 10 0.02174% 36.1% > 10 0.09603% 31.2% 

> 20 0.01812% 35.4% > 20 0.09422% 31.2% 

> 30 0.01268% 34.4% > 30 0.05617% 30.9% 

> 40 0.00544% 32.7% > 40 0.01812% 29.3% 

> 50 0.00362% 29.7% > 50 0.00362% 27.3% 

> 60 0.00362% 26.0% > 60 0.00362% 25.9% 

> 70 0.00181% 18.8% > 70 0.00181% 23.1% 

> 80 0.00181% 12.4% > 80 0.00000% 16.2% 

> 90 0.00181% 4.6% > 90 0.00000% 8.8% 

> 99 0.00000% 1.0% > 99 0.00000% 3.5% 
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TABLE II.  FALSE POSITIVE AND DETECTION RATES FOR TLSH AND THE 

NILSIMSA HASH 

TLSH Nilsimsa 

Score FP rate 
 Detect 
rate Score FP rate 

 Detect 
rate 

< 300 79.30% 98.8% > 120 99.86% 100.0% 

< 250 69.06% 98.8% > 130 99.20% 100.0% 

< 200 50.10% 98.8% > 140 98.11% 100.0% 

< 150 24.33% 98.1% > 150 96.98% 100.0% 

< 100 6.43% 94.5% > 160 94.26% 100.0% 

< 90 4.49% 92.3% > 170 89.52% 100.0% 

< 80 2.93% 89.0% > 180 81.38% 100.0% 

< 70 1.84% 83.6% > 190 69.69% 99.7% 

< 60 1.09% 76.0% > 200 54.45% 98.8% 

< 50 0.52% 65.3% > 210 36.73% 96.4% 

< 40 0.07% 49.6% > 220 18.29% 91.9% 

< 30 0.00181% 32.2% > 230 5.52% 72.0% 

< 20 0.00181% 17.3% > 240 1.26% 35.2% 

< 10 0.00181% 6.4% > 250 0.49% 9.5% 

 

We note the following from the tables: 

 The schemes have different scoring ranges. TLSH 
distance scores go up to 300 (and can potentially 
go up to over 1000). Sdhash and Ssdeep similarity 
scores are restricted to the range 0-100.  

 The Nilsimsa hash typically gives scores in the 
range 128-256 – and rarely goes below 128. A 

Nilsimsa score of 128 can be interpreted as 
meaning the files are completely different, while a 
score of 256 means the files are very similar. 

 The Sdhash and Ssdeep schemes have very low 
false positive rates for all sensible thresholds, but 
have a significantly lower range for their detection 
rate. 

 The TLSH scheme has very low false positive 
detection capabilities at thresholds <= 30 and very 
high detection rates for thresholds closer to 100. 
Of the four schemes, it is the only scheme which 
allows for the user to select a threshold which 
enables tradeoffs to be made between false 
positive rates and detection rates.  

 The Nilsimsa scheme has very strong capabilities 
for detecting similar files, but suffers from 
significantly higher false positive rates. We note 
that the results of the Nilsimsa scheme are strictly 
worse than the TLSH scheme – so we drop the 
Nilsimsa scheme from further consideration. 

We took the false positive and true positive rates for three 
of the schemes and created a ROC curve (for clarity we have 
removed the Nilsimsa scheme since it is not a competitive 
scheme). Fig. 1 shows the ROC curve where the scoring 
threshold was systematically varied to determine whether two 
files were a match or not. 

The ROC curve highlights a deficiency in the Sdhash and 
Ssdeep schemes. Limiting the scoring to 0-100 has resulted in 
schemes where there is no available threshold for many useful 
cases.  

 

 

 

Fig. 1. ROC Curve
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 For the Sdhash and Ssdeep schemes, this results in a ROC 
curve which abruptly changes in nature once the threshold hits 
the score of 1. It is not a sensible use of these schemes to use a 
threshold of 0 – since that is equivalent to asserting that all files 
are similar. From Table 1, we see that at a threshold of 1, 
Sdhash has a false positive rate of 0.047% and a detection rate 
of 37.1%. At a threshold of 0, Sdhash has a false positive rate 
of 100% and a detection rate of 100%. There are no thresholds 
available between these extremes. We have drawn in this point 
on the ROC diagram so that we can calculate the ROC area. 

The ROC area for each of the methods is shown in Table 3. 
We list the areas under the curves as a standard part of a ROC 
analysis, while noting that the areas for the Sdhash and Ssdeep 
schemes were dominated by the limitation on thresholds noted 
above. 

TABLE III.  AREA UNDER ROC CURVE 

 TLSH Sdhash Ssdeep 

Area under 
ROC curve 

0.9775 0.6855 0.6555 

 

The value in doing the ROC analysis was twofold: 

 It established that the various choices about the 
algorithm and parameters made in Sections 2 and 
3 created a robust scheme. 

 It identified that using a scoring range of 0-100 
created limitations for the Sdhash and Ssdeep 
schemes. 

 

B. Systematically Changing a File 

We started with the first 500 lines of Pride and Prejudice 
(pg1342.txt from [9]). We created 500 versions of this text, 
each one more `different` from the original text than the 
previous. 

 

 

Fig. 2. The scores on mutations of the first 500 lines of Pride and Prejudice. 

 

The changes we introduced were random, and consisted of 
performing one of the following changes: 

(i) inserting a new word, 

(ii) deleting an existing word, 

(iii) swapping two words, 

(iv) substituting a word for another word, 

(v) replacing 10 occurrences of a character for another 
character, or  

(vi) deleting 10 occurrences of a character. 

The scores comparing the original text with the files generated 
by this process for Ssdeep, Sdhash and TLSH are shown below 
in Fig. 2. 

We then applied the same approach to the entire text of 
Pride and Prejudice (13426 lines containing 704,146 bytes). 
We again iteratively applied changes. Due to the size of the 
book, at each iteration we would do one of the following 
transactions: 

(A) apply 40 of the changes (i) - (vi) described above, 

(B) swap two sections containing 5-25 lines, or 

(C) delete 5-25 lines. 

The scores comparing the original text with the files generated 
by this process for Ssdeep, Sdhash and TLSH are shown below 
in Fig. 3. 

 

 

Fig. 3. The scores on mutations of entire text of Pride and Prejudice. 

In both Fig. 2 and Fig. 3, the Ssdeep and Sdhash similarity 
scores go down from 100 to 0, while the distance score for 
TLSH grows. In both graphs, well after the Ssdeep and Sdhash 
methods have scored the files as being distinct (a score of 0), 
the TLSH method is giving distance scores which can be 
interpreted as saying the files are `similar` (in the range of 10 
to 40). 

Alarmingly for the Ssdeep method, in Fig. 3, the Ssdeep 
score immediately goes to zero after the 2

nd
 iteration of 

changes to the text. At this point the Unix diff command can 
determine that the files are very similar – only 153 changes 
have occurred and the first change does not occur until line 44 
out of 13426 lines. 

A visual inspection of the files agrees with the TLSH 
scores. After 150 iterations of the process, where both Sdhash 
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and Ssdeep have failed to identify the files as being similar, a 
human reader can still say with confidence that the text is the 
start of Pride and Prejudice. The first paragraph of the 150th 
iteration of this process is shown in Fig. 4. 

 

PRIDE AND PREJUDICE 

By Jane Austen 

Chapter 1 

It is a truth universally aiknowledged, 
younarenangreatndealntoonapt,nyounknow, a single man in 
possession of a good fortune, must be in want of a wife. 

 

Fig. 4. The first paragraph of the 150th iteration of the mutation process. 

C. Performance 

We performed a comparison of the speed of the TLSH 
code.  Table 4 below shows the TLSH performance on Ubuntu 
machine (Intel Pentium 4 CPU 3.40 GHz, 4G RAM) compared 
to MD5, SHA-1 and Ssdeep. The input data length is 4096 
bytes, and the times were averaged over 10,000 computations 
of the hash. 

TABLE IV.  AVERAGE SPEED FOR CALCULATING THE DIGESTS 

Method Average Time (microsecond) 

TLSH 286 

MD5 38 

SHA1 53 

Ssdeep 265 

 

The speed of TLSH is about the same as Ssdeep. 

V. CONCLUSION 

This paper has described the TLSH approach based on 
Locality Sensitive Hashing for implementing similarity digests. 
The approach described here has been released as open source 
code [12]. 

The ROC analysis highlighted a significant problem with 
the range of values which the Sdhash and Ssdeep similarity 
score can take. Restricting this to a range of 0-100 limits the 
usefulness of the schemes. 

The TLSH scheme described has outperformed available 
digest methods for identifying similar documents, especially 
for applications where missed detections are of concern and 
false alarms are acceptable. The TLSH method shows distinct 
advantages in the nature of its ROC curve, and therefore has a 
wider range of computer security applications. The empirical 
evaluation highlights significant problems with previously 
proposed schemes. 
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